Hybrid Density Functional Study on the Photocatalytic Properties of Two-dimensional g-ZnO Based Heterostructures

被引:18
作者
Wang, Guangzhao [1 ]
Li, Dengfeng [2 ]
Sun, Qilong [3 ]
Dang, Suihu [1 ]
Zhong, Mingmin [4 ]
Xiao, Shuyuan [5 ]
Liu, Guoshuai [6 ]
机构
[1] Yangtze Normal Univ, Sch Elect Informat Engn, Chongqing 408100, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Dept Sci, Chongqing 400065, Peoples R China
[3] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[4] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China
[5] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[6] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
ZnO/WS2; ZnO/WSe2; photocatalysis; hybrid density functional; WATER-SPLITTING PHOTOCATALYST; ELECTRONIC-PROPERTIES; COMPOSITES; MONOLAYER; NANOSHEET; GRAPHENE;
D O I
10.3390/nano8060374
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, graphene-like ZnO (g-ZnO)-based two-dimensional (2D) heterostructures (ZnO/WS2 and ZnO/WSe2) were designed as water-splitting photocatalysts based on the hybrid density functional. The dependence of photocatalytic properties on the rotation angles and biaxial strains were investigated. The bandgaps of ZnO/WS2 and ZnO/WSe2 are not obviously affected by rotation angles but by strains. The ZnO/WS2 heterostructures with appropriate rotation angles and strains are promising visible water-splitting photocatalysts due to their appropriate bandgap for visible absorption, proper band edge alignment, and effective separation of carriers, while the water oxygen process of the ZnO/WSe2 heterostructures is limited by their band edge positions. The findings pave the way to efficient g-ZnO-based 2D visible water-splitting materials.
引用
收藏
页数:9
相关论文
共 39 条
[1]   van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations [J].
Bjorkman, T. ;
Gulans, A. ;
Krasheninnikov, A. V. ;
Nieminen, R. M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Growth of ZnO thin films - experiment and theory [J].
Claeyssens, F ;
Freeman, CL ;
Allan, NL ;
Sun, Y ;
Ashfold, MNR ;
Harding, JH .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (01) :139-148
[5]   Microscopic model for the strain-driven direct to indirect band-gap transition in monolayer MoS2 and ZnO [J].
Das, Ruma ;
Rakshit, Bipul ;
Debnath, Saikat ;
Mahadevan, Priya .
PHYSICAL REVIEW B, 2014, 89 (11)
[6]   Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional [J].
Ernzerhof, M ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (11) :5029-5036
[7]   Mechanical properties of graphene nanoribbons [J].
Faccio, Ricardo ;
Denis, Pablo A. ;
Pardo, Helena ;
Goyenola, Cecilia ;
Mombru, Alvaro W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (28)
[8]   Magnetism from 2p states in K-doped ZnO monolayer: A density functional study [J].
Fang, D. Q. ;
Zhang, Y. ;
Zhang, S. L. .
EPL, 2016, 114 (04)
[9]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[10]   Tunable Magnetism in a Nonmetal-Substituted ZnO Monolayer: A First-Principles Study [J].
Guo, Hongyan ;
Zhao, Yu ;
Lu, Ning ;
Kan, Erjun ;
Zeng, Xiao Cheng ;
Wu, Xiaojun ;
Yang, Jinlong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (20) :11336-11342