Nonlinear Cognitive Signal Processing in Ultralow-Power Programmable Analog Hardware

被引:5
作者
Ghaderi, Viviane S. [1 ]
Song, Dong [2 ]
Choma, John, Jr. [1 ]
Berger, Theodore W. [2 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA
关键词
Analog signal processing; biomimetic; Gm-C filters; neuromorphic; process and mismatch compensation; programmable analog circuits; subthreshold; weak inversion;
D O I
10.1109/TCSII.2014.2387693
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents a programmable ultralow-power analog neural signal processing system. The analog hardware implements a nonlinear model that can replicate and predict, in real time, the temporal neural codes used in complex brain functions. The transistors of the analog circuits operate in weak inversion. A digital control system is used to program model parameters and calibrate mismatches. The chip was implemented in a 130-nm complementary metal-oxide-semiconductor technology and occupies an area of 1 mm(2). The power consumption of the system is 120 nW. The modular design allows for easy scaling to achieve large-scale hardware systems that emulate spike transformations of populations of neurons.
引用
收藏
页码:124 / 128
页数:5
相关论文
共 17 条
[1]   A Hippocampal Cognitive Prosthesis: Multi-Input, Multi-Output Nonlinear Modeling and VLSI Implementation [J].
Berger, Theodore W. ;
Song, Dong ;
Chan, Rosa H. M. ;
Marmarelis, Vasilis Z. ;
LaCoss, Jeff ;
Wills, Jack ;
Hampson, Robert E. ;
Deadwyler, Sam A. ;
Granacki, John J. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2012, 20 (02) :198-211
[2]   Brain-implantable biomimetic electronics as the next era in neural prosthetics [J].
Berger, TW ;
Baudry, M ;
Brinton, RD ;
Liaw, JS ;
Marmarelis, VZ ;
Park, AY ;
Sheu, BJ ;
Tanguay, AR .
PROCEEDINGS OF THE IEEE, 2001, 89 (07) :993-1012
[3]  
Enz C.C., 2006, Charge-based MOS transistor modeling: the EKV model for low-power and RF IC design
[4]   CMOS 12 bits 50kS/s Micropower SAR and Dual-Slope Hybrid ADC [J].
Fang, Xiang ;
Srinivasan, Vijay ;
Wills, Jack ;
Granacki, John ;
LaCoss, Jeff ;
Choma, John .
2009 52ND IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2009, :180-+
[5]  
Ghaderi VS, 2012, IEEE ENG MED BIO, P767, DOI 10.1109/EMBC.2012.6346044
[6]   Linear-Phase Delay Filters for Ultra-Low-Power Signal Processing in Neural Recording Implants [J].
Gosselin, Benoit ;
Sawan, Mohamad ;
Kerherve, Eric .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2010, 4 (03) :171-180
[7]   A low-power low-noise CMOS amplifier for neural recording applications [J].
Harrison, RR ;
Charles, C .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (06) :958-965
[8]   Finding a roadmap to achieve large neuromorphic hardware systems [J].
Hasler, Jennifer ;
Marr, Bo .
FRONTIERS IN NEUROSCIENCE, 2013, 7
[9]  
Hsiao M.-C., 2006, P 28 ANN INT C IEEE, P489
[10]   Neuromorphic silicon neuron circuits [J].
Indiveri, Giacomo ;
Linares-Barranco, Bernabe ;
Hamilton, Tara Julia ;
van Schaik, Andre ;
Etienne-Cummings, Ralph ;
Delbruck, Tobi ;
Liu, Shih-Chii ;
Dudek, Piotr ;
Hafliger, Philipp ;
Renaud, Sylvie ;
Schemmel, Johannes ;
Cauwenberghs, Gert ;
Arthur, John ;
Hynna, Kai ;
Folowosele, Fopefolu ;
Saighi, Sylvain ;
Serrano-Gotarredona, Teresa ;
Wijekoon, Jayawan ;
Wang, Yingxue ;
Boahen, Kwabena .
FRONTIERS IN NEUROSCIENCE, 2011, 5