Approximating solutions of maximal monotone operators in Hilbert spaces

被引:279
作者
Kamimura, S [1 ]
Takahashi, W [1 ]
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
关键词
maximal monotone operator; resolvent; proximal point algorithm; iteration; strong convergence; weak convergence;
D O I
10.1006/jath.2000.3493
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H he a real Hilbert space and let T:H --> 2(H) he a maximal monotone operator. In this paper, we first introduce two algorithms of approximating solutions of maximal monotone operators. One of them is to generate a strongly convergent sequence with limit v epsilon T(-1)0. The other is to discuss the weak convergence of the proximal point algorithm. Next, using these results, we consider the problem of finding a minimizer of a convex function. Our methods are motivated by Halpern's iteration and Mann's iteration. (C) 2000 Academic Press.
引用
收藏
页码:226 / 240
页数:15
相关论文
共 18 条
[1]  
ATSUSHIBA S, 1997, ANN U M CURIESKLODOW, V51, P1
[2]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[3]   STRONGLY CONVERGENT ITERATIVE SOLUTION OF 0 EPSILON U(X) FOR A MAXIMAL MONOTONE OPERATOR-U IN HILBERT-SPACE [J].
BRUCK, RE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (01) :114-126
[4]  
BRUCK RE, 1980, NONLINEAR ANAL, V5, P939
[5]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022
[6]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[7]  
JUNG JS, 1991, KODAI MATH J, V14, P358
[8]  
KHANG DB, 1990, ANALYSIS, V10, P1
[9]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510
[10]   ON MONOTONICITY OF GRADIENT OF CONVEX FUNCTION [J].
MINTY, GJ .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (01) :243-&