On the domination number of generalized Petersen graphs P(n,3)

被引:0
|
作者
Fu Xueliang [1 ]
Yang Yuansheng
Jiang Baoqi
机构
[1] Dalian Univ Technol, Dept Comp Sci, Dalian 116024, Peoples R China
[2] Inner Mongolia Agr Univ, Coll Comp & Informat Engn, Hohhot 010018, Peoples R China
关键词
dominating set; generalized Petersen graph; domination number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V(G), E(G)) be a graph. A set S subset of V(G) is a dominating set if every vertex of V(G) - S is adjacent to some vertices in S. The domination number gamma(G) of G is the minimum cardinality of a dominating set of G. In this paper, we study the domination number of generalized Petersen graphs P(n, 3) and proved that gamma(P(n, 3)) = n - 2[n/4] (n not equal 11).
引用
收藏
页码:373 / 383
页数:11
相关论文
共 50 条
  • [31] On the Double Roman Domination in Generalized Petersen Graphs P(5k,k)
    Rupnik Poklukar, Darja
    Zerovnik, Janez
    MATHEMATICS, 2022, 10 (01)
  • [32] On the Independence Number of the Generalized Petersen Graph P (n, k)
    Xu, Lian-Cheng
    Yang, Yuan-Sheng
    Xia, Zun-Quan
    Tian, Jing-Xi
    OPERATIONS RESEARCH AND ITS APPLICATIONS, PROCEEDINGS, 2009, 10 : 40 - +
  • [33] Domination in the generalized Petersen graph P(ck, k)
    Zhao, Weiliang
    Zheng, Meifang
    Wu, Lirong
    UTILITAS MATHEMATICA, 2010, 81 : 157 - 163
  • [34] LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS
    Lu, Weihua
    Yang, Chao
    Ren, Han
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 297 - 305
  • [35] On secure domination number of generalized Mycielskian of some graphs
    Nayana, P. G.
    Iyer, Radha Rajamani
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4831 - 4841
  • [36] GRAPHS WITH EQUAL DOMINATION AND INDEPENDENT DOMINATION NUMBER
    Vaidya, S. K.
    Pandit, R. M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2015, 5 (01): : 74 - 79
  • [37] Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs
    Qin, Yan-Li
    Xia, Binzhou
    Zhou, Sanming
    JOURNAL OF GRAPH THEORY, 2021, 97 (01) : 70 - 81
  • [38] REGNANT AND CAPTIVE DOMINATION IN SOME GENERALIZED GRAPHS
    Arvind
    Mehra, Seema
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 34 : 87 - 99
  • [39] Resolving domination number of graphs
    Alfarisi, Ridho
    Dafik
    Kristiana, Arika Indah
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (06)
  • [40] Transferable domination number of graphs
    Chang, Fei-Huang
    Chia, Ma-Lian
    Kuo, David
    Deng, Wen
    Liaw, Sheng-Chyang
    Pan, Zhishi
    DISCRETE APPLIED MATHEMATICS, 2022, 313 : 135 - 146