Everywhere regularity for vectorial functionals with general growth

被引:11
作者
Mascolo, E [1 ]
Migliorini, AP [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
来源
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS | 2003年 / 9卷
关键词
minimizers; regularity; nonstandard growth; exponential growth;
D O I
10.1051/cocv:2003019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove Lipschitz continuity for local minimizers of integral functionals of the Calulus of variations in the vectorial case, where the energy density depends explicity on the space variables and has general growth with respect to the gradient. One of the models is F(u) =integral(Omega) a(chi)[h(\Du\)](p(z))dchi with h a convex function with general growth (also exponential behaviour is allowed).
引用
收藏
页码:399 / 418
页数:20
相关论文
共 24 条
[1]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]  
ACERBI E, 2001, ANN SCUOLA NORM SUP, V30
[4]  
[Anonymous], 1995, RUSSIAN J MATH PHYS
[5]  
Aris R., 1975, MATH THEORY DIFFUSIO
[6]   Holder continuity of the gradient of p(x)-harmonic mappings [J].
Coscia, A ;
Mingione, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04) :363-368
[7]  
Dall'Aglio A., 1998, REND MAT APPL 7, V18, P305
[8]  
DALLAGLIO A, IN PRESS ATTI SEM MA
[9]   REMARKS ON THE REGULARITY OF THE MINIMIZERS OF CERTAIN DEGENERATE FUNCTIONALS [J].
GIAQUINTA, M ;
MODICA, G .
MANUSCRIPTA MATHEMATICA, 1986, 57 (01) :55-99
[10]  
Giaquinta M., 1983, ANN MATH STUD, V105