Modeling the Variability in Brain Morphology and Lesion Distribution in Multiple Sclerosis by Deep Learning

被引:0
作者
Brosch, Tom [1 ,4 ]
Yoo, Youngjin [1 ,4 ]
Li, David K. B. [2 ,4 ]
Traboulsee, Anthony [3 ,4 ]
Tam, Roger [2 ,4 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Radiol, Vancouver, BC, Canada
[3] Univ British Columbia, Div Neurol, Vancouver, BC, Canada
[4] Univ British Columbia, MS MRI Res Grp, Vancouver, BC, Canada
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT II | 2014年 / 8674卷
基金
加拿大自然科学与工程研究理事会;
关键词
Population modeling; multiple sclerosis; T2; lesion; machine learning; brain imaging; MRI; deep learning; deep belief networks; REGISTRATION; ACCURATE; ROBUST;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Changes in brain morphology and white matter lesions are two hallmarks of multiple sclerosis (MS) pathology, but their variability beyond volumetrics is poorly characterized. To further our understanding of complex MS pathology, we aim to build a statistical model of brain images that can automatically discover spatial patterns of variability in brain morphology and lesion distribution. We propose building such a model using a deep belief network (DBN), a layered network whose parameters can be learned from training images. In contrast to other manifold learning algorithms, the DBN approach does not require a prebuilt proximity graph, which is particularly advantageous for modeling lesions, because their sparse and random nature makes defining a suitable distance measure between lesion images challenging. Our model consists of a morphology DBN, a lesion DBN, and a joint DBN that models concurring morphological and lesion patterns. Our results show that this model can automatically discover the classic patterns of MS pathology, as well as more subtle ones, and that the parameters computed have strong relationships to MS clinical scores.
引用
收藏
页码:462 / 469
页数:8
相关论文
共 15 条
  • [1] A Combined Manifold Learning Analysis of Shape and Appearance to Characterize Neonatal Brain Development
    Aljabar, P.
    Wolz, R.
    Srinivasan, L.
    Counsell, S. J.
    Rutherford, M. A.
    Edwards, A. D.
    Hajnal, J. V.
    Rueckert, D.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (12) : 2072 - 2086
  • [2] Andersson J., 2007, TR07JA2 FMRIB CTR
  • [3] [Anonymous], 2010003 UTML TR U TO
  • [4] [Anonymous], 2009, P 26 ANN INT C MACHI, DOI DOI 10.1145/1553374.1553453
  • [5] Cayton L., 2005, Univ. of California at San Diego Tech. Rep, V12, P1
  • [6] The Impact of Lesion In-Painting and Registration Methods on Voxel-Based Morphometry in Detecting Regional Cerebral Gray Matter Atrophy in Multiple Sclerosis
    Ceccarelli, A.
    Jackson, J. S.
    Tauhid, S.
    Arora, A.
    Gorky, J.
    Dell'Oglio, E.
    Bakshi, A.
    Chitnis, T.
    Khoury, S. J.
    Weiner, H. L.
    Guttmann, C. R. G.
    Bakshi, R.
    Neema, M.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (08) : 1579 - 1585
  • [7] The Multiple Sclerosis Functional Composite measure (MSFC): an integrated approach to MS clinical outcome assessment
    Fischer, JS
    Rudick, RA
    Cutter, GR
    Reingold, SC
    [J]. MULTIPLE SCLEROSIS JOURNAL, 1999, 5 (04) : 244 - 250
  • [8] Unbiased average age-appropriate atlases for pediatric studies
    Fonov, Vladimir
    Evans, Alan C.
    Botteron, Kelly
    Almli, C. Robert
    McKinstry, Robert C.
    Collins, D. Louis
    [J]. NEUROIMAGE, 2011, 54 (01) : 313 - 327
  • [9] Manifold modeling for brain population analysis
    Gerber, Samuel
    Tasdizen, Tolga
    Fletcher, P. Thomas
    Joshi, Sarang
    Whitaker, Ross
    [J]. MEDICAL IMAGE ANALYSIS, 2010, 14 (05) : 643 - 653
  • [10] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    [J]. NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554