Marking games and the oriented game chromatic number of partial k-trees

被引:20
作者
Kierstead, HA [1 ]
Tuza, Z
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Hungarian Acad Sci, Inst Comp & Automat, H-1051 Budapest, Hungary
[3] Univ Veszprem, Dept Comp Sci, Veszprem, Hungary
关键词
D O I
10.1007/s00373-002-0489-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nesetril and Sopena introduced the concept of oriented game chromatic number. They asked whether the oriented game chromatic number of partial k-trees was bounded. Here we answer their question positively.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 21 条
[1]   PRECOLORING EXTENSION .1. INTERVAL-GRAPHS [J].
BIRO, M ;
HUJTER, M ;
TUZA, Z .
DISCRETE MATHEMATICS, 1992, 100 (1-3) :267-279
[2]  
Bodlaender Hans L., 1991, LECT NOTES COMPUT SC, V484, P30
[3]  
Buneman P., 1974, Discrete Mathematics, V9, P205, DOI 10.1016/0012-365X(74)90002-8
[4]  
Cai LZ, 2001, J GRAPH THEOR, V36, P144, DOI 10.1002/1097-0118(200103)36:3<144::AID-JGT1002>3.0.CO
[5]  
2-F
[6]   A bound for the game chromatic number of graphs [J].
Dinski, T ;
Zhu, XD .
DISCRETE MATHEMATICS, 1999, 196 (1-3) :109-115
[7]  
FAIGLE U, 1993, ARS COMBINATORIA, V35, P143
[8]  
GAVRIL F, 1974, J COMB THEORY B, V16, P477
[9]  
Guan DJ, 1999, J GRAPH THEOR, V30, P67, DOI 10.1002/(SICI)1097-0118(199901)30:1<67::AID-JGT7>3.0.CO
[10]  
2-M