CONGRUENCES CONCERNING GENERALIZED CENTRAL TRINOMIAL COEFFICIENTS

被引:3
作者
Chen, Jia-Yu [1 ]
Wang, Chen [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized central trinomial coefficients; binomial coefficients; congruences; SUMS;
D O I
10.1090/proc/15985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any n is an element of N = {0, 1, 2, ...} and b, c is an element of Z, the generalized central trinomial coefficient T-n (b,c) denotes the coefficient of x(n) in the expansion of (x(2) + bx c)(n). Let p be an odd prime. In this paper, we determine the summations Sigma T-p-1(k=0)k (b, c)(2)/m(k) modulo p(2) for integers m with certain restrictions. As applications, we confirm some conjectural congruences of Sun [Sci. China Math. 57 (2014), pp. 1375-1400].
引用
收藏
页码:3725 / 3738
页数:14
相关论文
共 26 条
[1]  
Andrews GE, 1999, ENCY MATH ITS APPL, V71
[2]  
Gould H.W, 1972, STANDARDIZED SET TAB
[3]   PROOF OF TWO CONJECTURES ON SUPERCONGRUENCES INVOLVING CENTRAL BINOMIAL COEFFICIENTS [J].
Gu, Cheng-Yang ;
Guo, Victor J. W. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (03) :360-364
[4]   Some q-congruences with parameters [J].
Guo, Victor J. W. .
ACTA ARITHMETICA, 2019, 190 (04) :381-393
[5]  
Ireland K., 1990, Graduate Texts in Mathematics, V84
[6]   Proof of some divisibility results on sums involving binomial coefficients [J].
Liu, Ji-Cai .
JOURNAL OF NUMBER THEORY, 2017, 180 :566-572
[7]   Supercongruences on some binomial sums involving Lucas sequences [J].
Mao, Guo-Shuai ;
Pan, Hao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1061-1078
[8]   From generating series to polynomial congruences [J].
Mattarei, Sandro ;
Tauraso, Roberto .
JOURNAL OF NUMBER THEORY, 2018, 182 :179-205
[9]   Congruences for central binomial sums and finite polylogarithms [J].
Mattarei, Sandro ;
Tauraso, Roberto .
JOURNAL OF NUMBER THEORY, 2013, 133 (01) :131-157
[10]   A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function [J].
Mortenson, E .
JOURNAL OF NUMBER THEORY, 2003, 99 (01) :139-147