Almost periodic solutions of second-order systems with monotone fields on a compact subset

被引:6
作者
Cieutat, P [1 ]
机构
[1] Univ Versailles, Lab Math Appl, F-78035 Versailles, France
关键词
second-order differential equations; bounded solutions; almost periodic solutions;
D O I
10.1016/S0362-546X(03)00026-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give sufficient conditions for the existence of almost periodic solutions of the second-order differential system: u" = F(t, u), when F is an element of C-0(R x K, R-N) with K is a compact convex subset of R-N, and the partial function F(t,.) is monotone for each t is an element of R. For existence, we do not assume that F(t,.) is strictly monotone. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:751 / 763
页数:13
相关论文
共 13 条
[1]  
Berger M. S., 1995, TOPOL METHOD NONL AN, V6, P283
[2]   FORCED QUASI-PERIODIC AND ALMOST-PERIODIC SOLUTION FOR NONLINEAR-SYSTEMS [J].
BERGER, MS ;
CHEN, YY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (12) :949-965
[3]  
Blot J., 1997, ADV DIFFER EQU-NY, V2, P693
[4]   Forced systems with almost periodic and quasiperiodic forcing term [J].
Carminati, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (06) :727-739
[5]  
Corduneanu C., 1968, Almost periodic functions
[6]  
Fink A., 1974, LECT NOTES MATH, V377
[7]  
Hiriart-Urruty J-B., 1993, CONVEX ANAL MINIMIZA
[8]  
Krasnoselskii M., 1968, TRANSL MATH MONOGRAP, V19
[9]  
Mawhin J, 2000, CH CRC RES NOTES, V410, P167
[10]  
MAWHIN J, 1979, CBMS REG C 40 AM MAT