Reduced Graphene Oxides: Influence of the Reduction Method on the Electrocatalytic Effect towards Nucleic Acid Oxidation

被引:48
作者
Baez, Daniela F. [1 ,2 ]
Pardo, Helena [3 ]
Laborda, Ignacio [3 ]
Marco, Jose F. [4 ]
Yanez, Claudia [1 ]
Bollo, Soledad [1 ,2 ]
机构
[1] Univ Chile, Fac Ciencias Quim & Farmaceut, Ctr Invest Proc Redox, CiPRex, Sergio Livingstone 1007, Santiago 8380492, Chile
[2] Univ Chile, Fac Ciencias Quim & Farmaceut, Adv Ctr Chron ACCDiS D, Sergio Livingstone 1007, Santiago 8380492, Chile
[3] Univ Republ Uruguay, Fac Quim, Ave Gen Flores 2124, Montevideo 11800, Uruguay
[4] CSIC, Inst Quim Fis Rocasolano, Calle Serrano 119, E-28006 Madrid, Spain
来源
NANOMATERIALS | 2017年 / 7卷 / 07期
关键词
graphene; reduced graphene oxide; glassy carbon electrode; SECM; DNA oxidation; ELECTROCHEMICAL DNA BIOSENSOR; FUNCTIONALIZED GRAPHENE; GRAPHITE OXIDE; RAMAN-SPECTROSCOPY; CARBON NANOTUBES; SHEETS; STRATEGIES; ELECTRODES; CAPACITY; CHITOSAN;
D O I
10.3390/nano7070168
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For the first time a critical analysis of the influence that four different graphene oxide reduction methods have on the electrochemical properties of the resulting reduced graphene oxides (RGOs) is reported. Starting from the same graphene oxide, chemical (CRGO), hydrothermal (hTRGO), electrochemical (ERGO), and thermal (TRGO) reduced graphene oxide were produced. The materials were fully characterized and the topography and electroactivity of the resulting glassy carbon modified electrodes were also evaluated. An oligonucleotide molecule was used as a model of DNA electrochemical biosensing. The results allow for the conclusion that TRGO produced the RGOs with the best electrochemical performance for oligonucleotide electroanalysis. A clear shift in the guanine oxidation peak potential to lower values (similar to 0.100 V) and an almost two-fold increase in the current intensity were observed compared with the other RGOs. The electrocatalytic effect has a multifactorial explanation because the TRGO was the material that presented a higher polydispersity and lower sheet size, thus exposing a larger quantity of defects to the electrode surface, which produces larger physical and electrochemical areas.
引用
收藏
页数:15
相关论文
共 49 条
  • [1] Comparative study of synthesis and reduction methods for graphene oxide
    Alazmi, Amira
    Rasul, Shahid
    Patole, Shashikant P.
    Costa, Pedro M. F. J.
    [J]. POLYHEDRON, 2016, 116 : 153 - 161
  • [2] Low energy pure shear milling: A method for the preparation of graphite nano-sheets
    Antisari, M. Vittori
    Montone, A.
    Jovic, N.
    Piscopiello, E.
    Alvani, C.
    Pilloni, L.
    [J]. SCRIPTA MATERIALIA, 2006, 55 (11) : 1047 - 1050
  • [3] Assay U.O., 2011, ACS NANO, V5, P3817
  • [4] A comparative study of electrochemical performances of carbon nanomaterial-modified electrodes for DNA detection. Nanotubes or graphene?
    Baez, Daniela F.
    Bollo, Soledad
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (04) : 1059 - 1064
  • [5] Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
  • [6] SCANNING ELECTROCHEMICAL MICROSCOPY - INTRODUCTION AND PRINCIPLES
    BARD, AJ
    FAN, FRF
    KWAK, J
    LEV, O
    [J]. ANALYTICAL CHEMISTRY, 1989, 61 (02) : 132 - 138
  • [7] Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in chitosan
    Bollo, Soledad
    Ferreyra, Nancy F.
    Rivas, Gustavo A.
    [J]. ELECTROANALYSIS, 2007, 19 (7-8) : 833 - 840
  • [8] Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions
    Bosch-Navarro, Concha
    Coronado, Eugenio
    Marti-Gastaldo, Carlos
    Sanchez-Royo, J. F.
    Gomez Gomez, Maribel
    [J]. NANOSCALE, 2012, 4 (13) : 3977 - 3982
  • [9] Electrochemical characterization of oligonucleotide-carbon nanotube functionalized using different strategies
    Canete-Rosales, P.
    Gonzalez, M.
    Anson, A.
    Martinez, M. T.
    Yanez, C.
    Bollo, S.
    [J]. ELECTROCHIMICA ACTA, 2014, 140 : 489 - 496
  • [10] Chemically Modified Graphenes as Detectors in Lab-on-Chip Device
    Chua, Chun Kiang
    Pumera, Martin
    [J]. ELECTROANALYSIS, 2013, 25 (04) : 945 - 950