Real-Time Regional Ionospheric Total Electron Content Modeling Using Spherical Harmonic Function

被引:1
作者
Zhang, Shoujian [1 ]
Chang, Xin [1 ]
Zhang, Wei [1 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, Wuhan, Hubei, Peoples R China
来源
CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2013 PROCEEDINGS: BEIDOU/GNSS NAVIGATION APPLICATIONS, TEST & ASSESSMENT TECHNOLOGY, USER TERMINAL TECHNOLOGY | 2013年
关键词
CORS; Ionosphere; Regional; Modeling; TEC; DCB;
D O I
10.1007/978-3-642-37398-5_11
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Ionospheric Total Electron Content (TEC) model is very important for navigation, precise positioning and some other applications. In recent years, with the fast development of the local Continuously Operating Reference Stations (CORS) in China, determining precise local Ionospheric TEC model is very attractive for local precise positioning. Ionosphere delay is one of the most error sources. At present, the establishment of large-scale CORS system in china provided the conditions for establish real-time regional Ionospheric model using spherical harmonic function. In this paper, we will model the ionospheric TEC using the GPS geometry-free combination observable with the low order spherical harmonic function, meanwhile, the DCBs will also be solved with the Vertical TEC (VTEC). In the experiment, about 20 IGS stations from Europe are chosen to simulate a CORS network, a set of ionosphere coefficients is assumed every 2 h. By comparisons with the IGS Analysis Centre's model, it shows that the mean difference of the DCBs is less than 0.35 ns with the RMS about 0.2 ns, and the difference of the VTEC is less than 3 TECU.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 50 条
[41]   Embedded Real-Time System Modeling and Analysis Using AADL [J].
Zhao, Yue ;
Ma, Dianfu .
2010 INTERNATIONAL CONFERENCE ON NETWORKING AND INFORMATION TECHNOLOGY (ICNIT 2010), 2010, :247-251
[42]   Improvement of the real time total electron content based on the International Reference Ionosphere model [J].
Maltseva, O. A. ;
Zhbankov, G. A. ;
Quang, T. Trinh .
ADVANCES IN SPACE RESEARCH, 2010, 46 (08) :1008-1015
[43]   Two-Dimensional Mapping of Ionospheric Total Electron Content over the Philippines Using Kriging Interpolation [J].
Maglambayan, Vincent Louie L. ;
Macalalad, Ernest P. .
ATMOSPHERE, 2022, 13 (10)
[44]   Prediction of ionospheric total electron content using adaptive neural network with in-situ learning algorithm [J].
Acharya, Rajat ;
Roy, Bijoy ;
Sivaraman, M. R. ;
Dasgupta, Ashish .
ADVANCES IN SPACE RESEARCH, 2011, 47 (01) :115-123
[45]   Spatio-Temporal Prediction of Ionospheric Total Electron Content Using an Adaptive Data Fusion Technique [J].
Erken, Faruk ;
Karatay, Secil ;
Cinar, Ali .
GEOMAGNETISM AND AERONOMY, 2019, 59 (08) :971-979
[46]   Evaluation of Dynamic Attributes and Variability of Ionospheric Slant Total Electron Content Using NavIC Satellite System [J].
Gusain, Raj ;
Vidyarthi, Anurag ;
Prakash, Rishi ;
Shukla, A. K. .
GEOMAGNETISM AND AERONOMY, 2024, 64 (05) :743-759
[47]   Storm-Time Relative Total Electron Content Modelling Using Machine Learning Techniques [J].
Adolfs, Marjolijn ;
Hoque, Mohammed Mainul ;
Shprits, Yuri Y. .
REMOTE SENSING, 2022, 14 (23)
[48]   Reconstruction of Storm-Time Total Electron Content Using Ionospheric Tomography and Artificial Neural Networks: A Comparative Study Over the African Region [J].
Uwamahoro, Jean Claude ;
Giday, Nigussie M. ;
Habarulema, John Bosco ;
Katamzi-Joseph, Zama T. ;
Seemala, Gopi Krishna .
RADIO SCIENCE, 2018, 53 (11) :1328-1345
[49]   Modeling of Resonant Inverters with High Harmonic Content using the Extended Describing Function Method [J].
Dominguez, A. ;
Otin, A. ;
Barragan, L. A. ;
Lucia, O. ;
Artigas, J. I. .
38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, :5949-5954
[50]   A novel ionospheric mapping function modeling at regional scale using empirical orthogonal functions and GNSS data [J].
Peng Chen ;
Rong Wang ;
Yibin Yao ;
Zhiyuan An ;
Zhihao Wang .
Journal of Geodesy, 2022, 96