Real-Time Regional Ionospheric Total Electron Content Modeling Using Spherical Harmonic Function

被引:1
作者
Zhang, Shoujian [1 ]
Chang, Xin [1 ]
Zhang, Wei [1 ]
机构
[1] Wuhan Univ, Sch Geodesy & Geomat, Wuhan, Hubei, Peoples R China
来源
CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2013 PROCEEDINGS: BEIDOU/GNSS NAVIGATION APPLICATIONS, TEST & ASSESSMENT TECHNOLOGY, USER TERMINAL TECHNOLOGY | 2013年
关键词
CORS; Ionosphere; Regional; Modeling; TEC; DCB;
D O I
10.1007/978-3-642-37398-5_11
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Ionospheric Total Electron Content (TEC) model is very important for navigation, precise positioning and some other applications. In recent years, with the fast development of the local Continuously Operating Reference Stations (CORS) in China, determining precise local Ionospheric TEC model is very attractive for local precise positioning. Ionosphere delay is one of the most error sources. At present, the establishment of large-scale CORS system in china provided the conditions for establish real-time regional Ionospheric model using spherical harmonic function. In this paper, we will model the ionospheric TEC using the GPS geometry-free combination observable with the low order spherical harmonic function, meanwhile, the DCBs will also be solved with the Vertical TEC (VTEC). In the experiment, about 20 IGS stations from Europe are chosen to simulate a CORS network, a set of ionosphere coefficients is assumed every 2 h. By comparisons with the IGS Analysis Centre's model, it shows that the mean difference of the DCBs is less than 0.35 ns with the RMS about 0.2 ns, and the difference of the VTEC is less than 3 TECU.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 50 条
[31]   Estimation of ionospheric total electron content using GNSS observations derived from a smartphone [J].
Li Xu ;
Jiuping Zha ;
Min Li ;
Yunbin Yuan ;
Baocheng Zhang .
GPS Solutions, 2022, 26
[32]   A Method in Determining Ionospheric Total Electron Content Using GNSS Data for non-IGS Receiver Stations [J].
Mendoza, Merlin M. ;
Juadines, Kyle Ezekiel S. ;
Macalalad, Ernest P. ;
Hsiao, Tung-Yuan .
2019 6TH INTERNATIONAL CONFERENCE ON SPACE SCIENCE AND COMMUNICATION (ICONSPACE2019), 2019, :186-191
[33]   Observation of Low-Latitude Ionospheric Irregularities using Rate of Change of Total Electron Content over the Philippine Sector [J].
Juadines, Kyle Ezekiel S. ;
Macalalad, Ernest P. ;
Mendoza, Merlin M. .
2019 6TH INTERNATIONAL CONFERENCE ON SPACE SCIENCE AND COMMUNICATION (ICONSPACE2019), 2019, :112-115
[34]   Improved Ionospheric Total Electron Content Maps over China Using Spatial Gridding Approach [J].
Song, Fucheng ;
Shi, Shuangshuang .
ATMOSPHERE, 2024, 15 (03)
[35]   Prediction of ionospheric total electron content data using spatio-temporal residual network [J].
Shenvi, Nayana ;
Chandrasekhar, E. ;
Kumar, Anurag ;
Virani, Hassanali .
ADVANCES IN SPACE RESEARCH, 2023, 72 (11) :4856-4867
[36]   CNES real-time ionospheric product accuracy analysis based on empirical orthogonal function decomposition [J].
Zifan Xu ;
Shuhui Li ;
Jie Li ;
Zhichao Wen ;
Hang Shen .
Astrophysics and Space Science, 2022, 367
[37]   CNES real-time ionospheric product accuracy analysis based on empirical orthogonal function decomposition [J].
Xu, Zifan ;
Li, Shuhui ;
Li, Jie ;
Wen, Zhichao ;
Shen, Hang .
ASTROPHYSICS AND SPACE SCIENCE, 2022, 367 (02)
[38]   Storm Time Total Electron Content Modeling Over African Low-Latitude and Midlatitude Regions [J].
Uwamahoro, Jean Claude ;
Habarulema, John Bosco ;
Okouma, Patrice Martin .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (09) :7889-7905
[39]   Performance evaluation of linear time-series ionospheric Total Electron Content model over low latitude Indian GPS stations [J].
Dabbakuti, J. R. K. Kumar ;
Ratnam, D. Venkata .
ADVANCES IN SPACE RESEARCH, 2017, 60 (08) :1777-1786
[40]   Prediction of ionospheric vertical total electron content from GPS data using ordinary kriging-based surrogate model [J].
Mukesh, R. ;
Soma, P. ;
Karthikeyan, V. ;
Sindhu, P. .
ASTROPHYSICS AND SPACE SCIENCE, 2019, 364 (01)