Weighted Learning Identification Method for Hammerstein Nonlinear Time-varying Systems

被引:0
|
作者
Zhong Guomin [1 ]
Yu Qile [1 ]
Chen Qiang [1 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Weighted iterative learning identification; Time-varying parameters; Hammerstein Model; Least squares algorithm; SUBSPACE IDENTIFICATION; MODEL;
D O I
10.11999/JEIT210857
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For Hammerstein nonlinear time-varying systems running repeatedly on finite intervals, a weighted iterative learning algorithm is proposed to estimate the time-varying parameters involved in the system dynamics. The nonlinear input part of the Hammerstein system is tackled based on polynomial expansion, and the iterative learning least square algorithm is given for the time-varying parameter identification. In order to prevent data saturation, an iterative learning least squares algorithm with forgetting factor is proposed for reducing the system tracking error and improving the identification accuracy; A weighted iterative learning least squares algorithm is further presented by introducing the weight matrix. The derivations of the three algorithms are given in detail. The simulation results demonstrate the effectiveness of the proposed learning algorithms, and in comparison with iterative learning least squares algorithm, the modified one sreach high identification accuracy and need fewer iterations.
引用
收藏
页码:1610 / 1616
页数:7
相关论文
共 25 条
  • [1] An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems
    Bai, EW
    [J]. AUTOMATICA, 1998, 34 (03) : 333 - 338
  • [2] One-shot set-membership identification of Generalized Hammerstein-Wiener systems
    Cerone, Vito
    Razza, Valentino
    Regruto, Diego
    [J]. AUTOMATICA, 2020, 118
  • [3] NONITERATIVE METHOD FOR IDENTIFICATION USING HAMMERSTEIN MODEL
    CHANG, FHI
    LUUS, R
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (05) : 464 - +
  • [4] Ding F, 2006, NONLINEAR DYNAM, V45, P31, DOI [10.1007/s11071-005-1850-z, 10.1007/s11071-006-1850-7]
  • [5] Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model
    Ding, Feng
    Xu, Ling
    Meng, Dandan
    Jin, Xue-Bo
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 369
  • [6] Weighted Parameter Estimation for Hammerstein Nonlinear ARX Systems
    Ding, Jie
    Cao, Zhengxin
    Chen, Jiazhong
    Jiang, Guoping
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (04) : 2178 - 2192
  • [7] An improved method for Wiener-Hammerstein system identification based on the Fractional Approach
    Giordano, Giuseppe
    Gros, Sebastien
    Sjoberg, Jonas
    [J]. AUTOMATICA, 2018, 94 : 349 - 360
  • [8] Subspace identification of Hammerstein systems using least squares support vector machines
    Goethals, I
    Pelckmans, K
    Suykens, JAK
    De Moor, B
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1509 - 1519
  • [9] The Weighted Nearest Neighbor Estimate for Hammerstein System Identification
    Greblicki, Mlodzimierz
    Pawlak, Miroslaw
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (04) : 1550 - 1565
  • [10] Subspace Identification of SISO Hammerstein Systems: Application to Stretch Reflex Identification
    Jalaleddini, Kian
    Kearney, Robert E.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (10) : 2725 - 2734