LINEAR RECURRENCE SEQUENCES WITHOUT ZEROS

被引:4
作者
Dubickas, Arturas [1 ]
Novikas, Aivaras [1 ]
机构
[1] Vilnius State Univ, Dept Math & Informat, LT-03225 Vilnius, Lithuania
关键词
linear recurrence sequence; period modulo p; polynomial splitting in F-p[z; POWERS;
D O I
10.1007/s10587-014-0138-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a(d-1), ... ,a(0) is an element of Z, where d is an element of N and a(0) not equal 0, and let X = (x(n))(n=1)(infinity) be a sequence of integers given by the linear recurrence x(n+d) = a(d-1) x(n+1+d-1)+ ... +a(0)x for n = 1, 2, 3, ... We show that there are a prime number p and d integers x(1), ... , x(d) such that no element of the sequence X - (x(n))(n=1)(infinity) defined by the above linear recurrence is divisible by p. Furthermore, for any nonnegative integer 8 there is a prime number p >= 3 and d integers x(1), ... , x(d) such that every element of the sequence X = (x(n))(n-1)(infinity) defined as above modulo p belongs to the set {s+1, s+2, ... ,p - s - 1}.
引用
收藏
页码:857 / 865
页数:9
相关论文
共 24 条
[1]   IRREDUCIBILITY TESTING AND FACTORIZATION OF POLYNOMIALS [J].
ADLEMAN, LM ;
ODLYZKO, AM .
MATHEMATICS OF COMPUTATION, 1983, 41 (164) :699-709
[2]  
[Anonymous], 2000, J THEOR NOMBRES BORD
[3]  
[Anonymous], APPL FIBONACCI NUMBE
[4]  
[Anonymous], 2009, UNIF DISTRIB THEORY
[5]  
[Anonymous], P S DURH 1975
[6]  
[Anonymous], 2003, Mathematical Surveys and Monographs
[7]  
[Anonymous], P 2 INT C
[8]  
CARROLL D, 1994, FIBONACCI QUART, V32, P260
[9]   Arithmetical properties of powers of algebraic numbers [J].
Dubickas, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :70-80
[10]   On the distance from a rational power to the nearest integer [J].
Dubickas, A .
JOURNAL OF NUMBER THEORY, 2006, 117 (01) :222-239