Sensitivity of the fractional Bayes factor to prior distributions

被引:22
作者
Conigliani, C [1 ]
O'Hagan, A [1 ]
机构
[1] Univ Roma Tre, Dipartimento Econ, I-00154 Rome, Italy
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2000年 / 28卷 / 02期
关键词
fractional Bayes factor; Gateaux differential; improper priors; sensitivity; training sample;
D O I
10.2307/3315983
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors derive a measure of the sensitivity of the fractional Bayes factor, an index which is used to compare models when the priors for their respective parameters are improper, or when there is concern about robustness of the prior specification. They prove that in a large class of problems, this measure is a decreasing function of the fraction of the sample used to update the prior distribution before the models are compared.
引用
收藏
页码:343 / 352
页数:10
相关论文
共 17 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   ROBUST BAYESIAN-ANALYSIS - SENSITIVITY TO THE PRIOR [J].
BERGER, JO .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 25 (03) :303-328
[3]   The intrinsic Bayes factor for model selection and prediction [J].
Berger, JO ;
Pericchi, LR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) :109-122
[4]  
BERGER JO, 1995, J ROYAL STAT SOC B, V56, P130
[5]  
CONIGLIANI C, 1994, METRON, V52, P89
[6]  
DIACONIS P, 1986, ANN STAT, V14, P1, DOI 10.1214/aos/1176349830
[7]  
Gustafson P, 1996, ANN STAT, V24, P174
[8]  
Huber P. J., 1981, ROBUST STAT
[9]   BAYES FACTORS [J].
KASS, RE ;
RAFTERY, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :773-795
[10]  
Myers RH, 1989, CLASSICAL MODERN REG