System Identification of Brain-Machine Interface Control Using a Cursor Jump Perturbation

被引:0
作者
Stavisky, Sergey D. [1 ]
Kao, Jonathan C. [2 ]
Sorokin, Jordan M. [1 ]
Ryu, Stephen I. [2 ,7 ]
Shenoy, Krishna V. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Stanford Univ, Grad Program Neurosci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Neurobiol, Stanford, CA 94305 USA
[5] Stanford Univ, Bio X Program, Stanford, CA 94305 USA
[6] Stanford Univ, Stanford Neurosci Inst, Stanford, CA 94305 USA
[7] Palo Alto Med Fdn, Dept Neurosurg, Palo Alto, CA USA
来源
2015 7TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER) | 2015年
关键词
PRIMARY MOTOR CORTEX; COMPUTER INTERFACE; ADAPTATION; DESIGN; ARM;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Inspired by control theoretic approaches to studying motor control, we experimentally measured how a brain-machine interface (BMI) user responds to an unexpected perturbation. We randomly applied a step cursor position offset while a monkey controlled a BMI cursor using decoded motor cortical spiking activity. The subject was able to rapidly correct for these perturbations and (re) acquire the target regardless of when in the trial this cursor jump occurred. We observed a corrective neural response in motor cortex starting 115 ms after the cursor jump. At no time did the neural response to detecting this externally-induced error manifest itself (through the decoder) as a deleterious velocity change pushing the cursor away from the target. These results show that a user of a high-performance BMI can make rapid, accurate corrections to errors and that, insofar as the neural computations needed to counteract the error may involve motor cortex, these computations do not appear to interfere with BMI cursor control.
引用
收藏
页码:643 / 647
页数:5
相关论文
共 26 条
[1]   Online Control of Hand Trajectory and Evolution of Motor Intention in the Parietofrontal System [J].
Archambault, Philippe S. ;
Ferrari-Toniolo, Simone ;
Battaglia-Mayer, Alexandra .
JOURNAL OF NEUROSCIENCE, 2011, 31 (02) :742-752
[2]  
Bacher D., 2014, NEUROREHABIL NEURAL
[3]   Learning to control a brain-machine interface for reaching and grasping by primates [J].
Carmena, JM ;
Lebedev, MA ;
Crist, RE ;
O'Doherty, JE ;
Santucci, DM ;
Dimitrov, DF ;
Patil, PG ;
Henriquez, CS ;
Nicolelis, MAL .
PLOS BIOLOGY, 2003, 1 (02) :193-208
[4]   Behavioral and neural correlates of visuomotor adaptation observed through a brain-computer interface in primary motor cortex [J].
Chase, Steven M. ;
Kass, Robert E. ;
Schwartz, Andrew B. .
JOURNAL OF NEUROPHYSIOLOGY, 2012, 108 (02) :624-644
[5]   Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex [J].
Chestek, Cynthia A. ;
Gilja, Vikash ;
Nuyujukian, Paul ;
Foster, Justin D. ;
Fan, Joline M. ;
Kaufman, Matthew T. ;
Churchland, Mark M. ;
Rivera-Alvidrez, Zuley ;
Cunningham, John P. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. .
JOURNAL OF NEURAL ENGINEERING, 2011, 8 (04)
[6]   High-performance neuroprosthetic control by an individual with tetraplegia [J].
Collinger, Jennifer L. ;
Wodlinger, Brian ;
Downey, John E. ;
Wang, Wei ;
Tyler-Kabara, Elizabeth C. ;
Weber, Douglas J. ;
McMorland, Angus J. C. ;
Velliste, Meel ;
Boninger, Michael L. ;
Schwartz, Andrew B. .
LANCET, 2013, 381 (9866) :557-564
[7]  
Dadarlat M.C., 2014, Nature Neuroscience
[8]   Intention estimation in brain-machine interfaces [J].
Fan, Joline M. ;
Nuyujukian, Paul ;
Kao, Jonathan C. ;
Chestek, Cynthia A. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. .
JOURNAL OF NEURAL ENGINEERING, 2014, 11 (01)
[9]   Emergence of a Stable Cortical Map for Neuroprosthetic Control [J].
Ganguly, Karunesh ;
Carmena, Jose M. .
PLOS BIOLOGY, 2009, 7 (07)
[10]  
GEORGOPOULOS AP, 1983, EXP BRAIN RES, V49, P327