Theoretical study of solvent effect on intramolecular proton transfer of glycine

被引:125
作者
Kassab, E
Langlet, J
Evleth, E
Akacem, Y
机构
[1] Univ Paris 06, Chim Theor Lab, CNRS, UMR 7616, F-75252 Paris 05, France
[2] USTHB, Inst Chim, Algiers, Algeria
来源
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM | 2000年 / 531卷
关键词
hydrated glycine; intramolecular proton transfer; ab initio; DFT calculations; minimum energy path; solvent effect; continum model;
D O I
10.1016/S0166-1280(00)00451-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The intramolecular proton transfer pathways for the passage from the neutral form of NH2-CH2-COOH (GN) to the zwitterionic form +NH3-CH2-COO- (GZ) of glycine hydrated by three water molecules are computed using DFT and ab initio methods at high levels of theory. The three water molecule cluster yields a zwitterion minimum of about the same energy as the neutral form. The transfer barrier and the GZ-GN energy difference are strongly sensitive to the correlation effects. The solvent effect on the unhydrated and the trihydrated proton transfer surfaces are treated using a continuum model. As modeled in water, the solvent stabilizes the zwitterionic cis conformation of glycine with regard to the neutral cis form. The free energy stabilization of GZ(cis) over the GN(cis) form is 5.4 kcal mol(-1) for the solvated trihydrated complex compared to an experimental value of 7 kcal mol(-1). Also computed is the small free energy barrier of 2.2 kcal mol(-1) for the conversion of GN(cis) to GZ(cis). Rationalization of why this barrier persists at all levels of calculation is found in the fact that the solvent effect only becomes important when the structure is close to the zwitterionic configuration. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:267 / 282
页数:16
相关论文
共 88 条
[1]   MONTE-CARLO SIMULATION STUDIES OF THE SOLVATION OF IONS .3. THE NON INTRAMOLECULARLY H-BONDED FORM OF GLYCINE ZWITTERION [J].
ALAGONA, G ;
GHIO, C .
JOURNAL OF MOLECULAR LIQUIDS, 1990, 47 (1-3) :139-160
[2]  
ALAGONA G, 1988, J MOL STRUC-THEOCHEM, V43, P385, DOI 10.1016/0166-1280(88)80466-4
[3]   HYDROGEN-BOND STUDIES .77. ELECTRON-DENSITY DISTRIBUTION IN ALPHA-GLYCINE - X-N DIFFERENCE FOURIER SYNTHESIS VS AB-INITIO CALCULATIONS [J].
ALMLOF, J ;
KVICK, A ;
THOMAS, JO .
JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (08) :3901-3906
[4]  
Aue DH, 1979, GAS PHASE ION CHEM, V2, P2
[5]   CONFORMATIONAL BEHAVIOR OF GASEOUS GLYCINE BY A DENSITY-FUNCTIONAL APPROACH [J].
BARONE, V ;
ADAMO, C ;
LELJ, F .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (01) :364-370
[6]  
BARTMESS JE, 1979, GAS PHASE ION CHEM, V2, P88
[7]  
BENSON SW, 1970, NSRDS NMB, V21
[8]   CONFORMATIONAL ENERGY OF GLYCINE IN AQUEOUS-SOLUTIONS AND RELATIVE STABILITY OF THE ZWITTERIONIC AND NEUTRAL FORMS - AN ABINITIO STUDY [J].
BONACCORSI, R ;
PALLA, P ;
TOMASI, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1984, 106 (07) :1945-1950
[9]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[10]   MICROWAVE-SPECTRUM AND CONFORMATION OF GLYCINE [J].
BROWN, RD ;
GODFREY, PD ;
STOREY, JWV ;
BASSEZ, MP .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1978, (13) :547-548