Efficient estimation in heteroscedastic single-index models

被引:1
作者
Zhao, Yan-Yong [1 ]
Li, Jianquan [2 ]
Wang, Hong-Xia [1 ]
Zhao, Honghong [2 ]
Chen, Xueping [3 ]
机构
[1] Nanjing Audit Univ, Sch Stat & Data Sci, Nanjing 211815, Peoples R China
[2] Beijing Ultrapower Software Co Ltd, Beijing, Peoples R China
[3] Jiangsu Univ Technol, Dept Stat, Changzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Heteroscedastic errors; reweighting estimator; rMAVE; single-index models; DIMENSION REDUCTION; EMPIRICAL LIKELIHOOD; SEMIPARAMETRIC ESTIMATION; REGRESSION;
D O I
10.1080/10485252.2021.1931689
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we focus on the efficient estimation in single-index models with heteroscedastic errors. We first develop a nonparametric estimator of the variance function based on a fully nonparametric function or a dimension reduction structure, and the resulting estimator is consistent. Then, we propose a reweighting estimator of the parametric component via taking the estimated variance function into account, and the main results show that it has a smaller asymptotic variance than the naive estimator that neglects the heteroscedasticity. Simulation studies are conducted to evaluate the efficacy of the proposed methodologies, and an analysis of a real data example is provided for illustration.
引用
收藏
页码:273 / 298
页数:26
相关论文
共 27 条