A general extension theorem for cohomology classes on non reduced analytic subspaces

被引:32
作者
Cao, JunYan [1 ]
Demailly, Jean-Pierre [2 ]
Matsumura, Shin-ichi [3 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, F-75252 Paris, France
[2] Univ Grenoble Alpes, Inst Fourier, F-38610 Gieres, France
[3] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
基金
欧洲研究理事会; 日本学术振兴会;
关键词
compact Kahler manifold; singular hermitian metric; coherent sheaf cohomology; Dolbeault cohomology; plurisubharmonic function; L-2; estimates; Ohsawa-Takegoshi extension theorem; multiplier ideal sheaf;
D O I
10.1007/s11425-017-9066-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to generalize the celebrated L (2) extension theorem of Ohsawa and Takegoshi in several directions: The holomorphic sections to extend are taken in a possibly singular hermitian line bundle, the subvariety from which the extension is performed may be non reduced, the ambient manifold is Kahler and holomorphically convex, but not necessarily compact.
引用
收藏
页码:949 / 962
页数:14
相关论文
共 18 条
  • [1] [Anonymous], 2012, Analytic Methods in Algebraic Geometry
  • [2] [Anonymous], 2009, Complex Analytic and Differential Geometry
  • [3] Demailly J-P, 2015, ADV LECT MATH, V35
  • [4] On the Cohomology of Pseudoeffective Line Bundles
    Demailly, Jean-Pierre
    [J]. COMPLEX GEOMETRY AND DYNAMICS, 2015, : 51 - 99
  • [5] DEMAILLY JP, 1982, ANN SCI ECOLE NORM S, V15, P457
  • [6] Pseudo-effective line bundles on compact Kahler manifolds
    Demailly, JP
    Peternell, T
    Schneider, M
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (06) : 689 - 741
  • [7] L2-COHOMOLOGY AND INDEX THEOREM FOR THE BERGMAN METRIC
    DONNELLY, H
    FEFFERMAN, C
    [J]. ANNALS OF MATHEMATICS, 1983, 118 (03) : 593 - 618
  • [8] Folland G.B., 1972, The Neumann Problem for the Cauchy-Riemann Complex
  • [9] Fujino O, 2016, ARXIV160502284V1
  • [10] A transcendental approach to Kollar's injectivity theorem II
    Fujino, Osamu
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 681 : 149 - 174