Extrusion-Printing of Multi-Channeled Two-Component Hydrogel Constructs from Gelatinous Peptides and Anhydride-Containing Oligomers

被引:7
作者
Krieghoff, Jan [1 ]
Rost, Johannes [2 ]
Kohn-Polster, Caroline [1 ]
Mueller, Benno M. [1 ]
Koenig, Andreas [3 ]
Flath, Tobias [2 ]
Schulz-Siegmund, Michaela [1 ]
Schulze, Fritz-Peter [2 ]
Hacker, Michael C. [1 ,4 ]
机构
[1] Univ Leipzig, Inst Pharm, Pharmaceut Technol, Fac Med, Eilenburger Str 15a, D-04317 Leipzig, Germany
[2] Leipzig Univ Appl Sci HTWK Leipzig, Dept Mech & Energy Engn, Karl Liebknecht Str 134, D-04277 Leipzig, Germany
[3] Univ Leipzig, Dept Prosthodont & Mat Sci, Liebigstr 12, D-04103 Leipzig, Germany
[4] Heinrich Heine Univ, Inst Pharmaceut & Biopharmaceut, Univ Str 1, D-40225 Dusseldorf, Germany
关键词
multi-channeled nerve guidance conduit; additive manufacturing; two-component hydrogel; reactive oligomer; in vitro degradation;
D O I
10.3390/biomedicines9040370
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The performance of artificial nerve guidance conduits (NGC) in peripheral nerve regeneration can be improved by providing structures with multiple small channels instead of a single wide lumen. 3D-printing is a strategy to access such multi-channeled structures in a defined and reproducible way. This study explores extrusion-based 3D-printing of two-component hydrogels from a single cartridge printhead into multi-channeled structures under aseptic conditions. The gels are based on a platform of synthetic, anhydride-containing oligomers for cross-linking of gelatinous peptides. Stable constructs with continuous small channels and a variety of footprints and sizes were successfully generated from formulations containing either an organic or inorganic gelation base. The adjustability of the system was investigated by varying the cross-linking oligomer and substituting the gelation bases controlling the cross-linking kinetics. Formulations with organic N-methyl-piperidin-3-ol and inorganic K2HPO4 yielded hydrogels with comparable properties after manual processing and extrusion-based 3D-printing. The slower reaction kinetics of formulations with K2HPO4 can be beneficial for extending the time frame for printing. The two-component hydrogels displayed both slow hydrolytic and activity-dependent enzymatic degradability. Together with satisfying in vitro cell proliferation data, these results indicate the suitability of our cross-linked hydrogels as multi-channeled NGC for enhanced peripheral nerve regeneration.
引用
收藏
页数:22
相关论文
共 65 条
[21]   A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration [J].
Hadlock, T ;
Sundback, C ;
Hunter, D ;
Cheney, M ;
Vacanti, JP .
TISSUE ENGINEERING, 2000, 6 (02) :119-127
[22]   In Vitro Enzymatic Degradation of Tissue Grafts and Collagen Biomaterials by Matrix Metalloproteinases: Improving the Collagenase Assay [J].
Helling, A. L. ;
Tsekoura, E. K. ;
Biggs, M. ;
Bayon, Y. ;
Pandit, A. ;
Zeugolis, D. I. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (09) :1922-1932
[23]  
Hofmeister F., 1888, Archiv fu''rExperimentelle Pathologie Und Pharmakologie, V24, P68, DOI DOI 10.1007/BF01918191
[24]   Peripheral Nerve Conduit: Materials and Structures [J].
Houshyar, Shadi ;
Bhattacharyya, Amitava ;
Shanks, Robert .
ACS CHEMICAL NEUROSCIENCE, 2019, 10 (08) :3349-3365
[25]   3D Printing of Gelled and Cross-Linked Cellulose Solutions; an Exploration of Printing Parameters and Gel Behaviour [J].
Huber, Tim ;
Zadeh, Hossein Najaf ;
Feast, Sean ;
Roughan, Thea ;
Fee, Conan .
BIOENGINEERING-BASEL, 2020, 7 (02)
[26]   Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair [J].
Itoh, S ;
Takakuda, K ;
Kawabata, S ;
Aso, Y ;
Kasai, K ;
Itoh, H ;
Shinomiya, K .
BIOMATERIALS, 2002, 23 (23) :4475-4481
[27]   Controlling the kinetic chain length of the crosslinks in photo-polymerized biodegradable networks [J].
Jansen, Janine ;
Ghaffar, Abdul ;
van der Horst, Thomas N. S. ;
Mihov, George ;
van der Wal, Sjoerd ;
Feijen, Jan ;
Grijpma, Dirk W. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2013, 24 (04) :877-888
[28]   The repair Schwann cell and its function in regenerating nerves [J].
Jessen, K. R. ;
Mirsky, R. .
JOURNAL OF PHYSIOLOGY-LONDON, 2016, 594 (13) :3521-3531
[29]   Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks [J].
Kascholke, Christian ;
Loth, Tina ;
Kohn-Polster, Caroline ;
Moeller, Stephanie ;
Bellstedt, Peter ;
Schulz-Siegmund, Michaela ;
Schnabelrauch, Matthias ;
Hacker, Michael C. .
BIOMACROMOLECULES, 2017, 18 (03) :683-694
[30]   FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy [J].
Kehoe, S. ;
Zhang, X. F. ;
Boyd, D. .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2012, 43 (05) :553-572