Algorithms for Outerplanar Graph Roots and Graph Roots of Pathwidth at Most 2

被引:2
|
作者
Golovach, Petr A. [1 ]
Heggernes, Pinar [1 ]
Kratsch, Dieter [2 ]
Lima, Paloma T. [1 ]
Paulusma, Daniel [3 ]
机构
[1] Univ Bergen, Dept Informat, PB 7803, N-5020 Bergen, Norway
[2] Univ Lorraine, Lab Informat Theor & Appl, F-57045 Metz 01, France
[3] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
来源
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017) | 2017年 / 10520卷
关键词
SQUARE ROOTS; POLYNOMIAL-TIME; SPLIT GRAPHS; TREEWIDTH; TREE;
D O I
10.1007/978-3-319-68705-6_21
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deciding whether a given graph has a square root is a classical problem that has been studied extensively both from graph theoretic and from algorithmic perspectives. The problem is NP-complete in general, and consequently substantial effort has been dedicated to deciding whether a given graph has a square root that belongs to a particular graph class. There are both polynomial-time solvable and NP-complete cases, depending on the graph class. We contribute with new results in this direction. Given an arbitrary input graph G, we give polynomial-time algorithms to decide whether G has an outerplanar square root, and whether G has a square root that is of pathwidth at most 2.
引用
收藏
页码:275 / 288
页数:14
相关论文
共 46 条
  • [1] Finding Cut-Vertices in the Square Roots of a Graph
    Ducoffe, Guillaume
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 234 - 248
  • [2] THE TREEWIDTH AND PATHWIDTH OF GRAPH UNIONS
    Alecu, Bogdan
    V. Lozin, Vadim
    Quiroz, Daniel a.
    Rabinovich, Roman
    Razgon, Igor
    Zamaraev, Viktor
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (01) : 261 - 276
  • [3] Nondeterministic Graph Searching: From Pathwidth to Treewidth
    Fedor V. Fomin
    Pierre Fraigniaud
    Nicolas Nisse
    Algorithmica, 2009, 53 : 358 - 373
  • [4] Nondeterministic Graph Searching: From Pathwidth to Treewidth
    Fomin, Fedor V.
    Fraigniaud, Pierre
    Nisse, Nicolas
    ALGORITHMICA, 2009, 53 (03) : 358 - 373
  • [5] Nondeterministic graph searching: From pathwidth to treewidth
    Fomin, FV
    Fraigniaud, P
    Nisse, N
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2005, PROCEEDINGS, 2005, 3618 : 364 - 375
  • [6] MINOR-CLOSED GRAPH CLASSES WITH BOUNDED LAYERED PATHWIDTH
    Dujmovic, Vida
    Eppstein, David
    Joret, Gwenael
    Morin, Pat
    Wood, David R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (03) : 1693 - 1709
  • [7] Incrementalizing Graph Algorithms
    Fan, Wenfei
    Tian, Chao
    Xu, Ruiqi
    Yin, Qiang
    Yu, Wenyuan
    Zhou, Jingren
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 459 - 471
  • [8] CHR-Graph: A Platform for Animating Tree and Graph Algorithms
    Sharaf, Nada
    Abdennadher, Slim
    Fruewirth, Thom
    2017 21ST INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2017, : 450 - 453
  • [9] Treewidth, pathwidth and cospan decompositions with applications to graph-accepting tree automata
    Blume, Christoph
    Bruggink, H. J. Sander
    Friedrich, Martin
    Koenig, Barbara
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2013, 24 (03): : 192 - 206
  • [10] Graph subcolorings: Complexity and algorithms
    Fiala, J
    Jansen, K
    Le, VB
    Seidel, E
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (04) : 635 - 650