Dynamical Systems Model of RNA Velocity Improves Inference of Single-cell Trajectory, Pseudo-time and Gene Regulation

被引:13
作者
Liu, Ruishan [1 ]
Pisco, Angela Oliveira [2 ]
Braun, Emelie [3 ]
Linnarsson, Sten [3 ,4 ]
Zou, James [1 ,2 ,4 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA USA
[2] Chan Zuckerberg Biohub, San Francisco, CA USA
[3] Karolinska Inst, Stockholm, Sweden
[4] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
NETWORK INFERENCE; EXPRESSION;
D O I
10.1016/j.jmb.2022.167606
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent development in inferring RNA velocity from single-cell RNA-seq opens up exciting new vista into developmental lineage and cellular dynamics. However, the estimated velocity only gives a snapshot of how the transcriptome instantaneously changes in individual cells, and it does not provide quantitative predictions and insights about the whole system. In this work, we develop RNA-ODE, a principled com-putational framework that extends RNA velocity to quantify systems level dynamics and improve single-cell data analysis. We model the gene expression dynamics by an ordinary differential equation (ODE) based formalism. Given a snapshot of gene expression at one time, RNA-ODE is able to predict and extrapolate the expression trajectory of each cell by solving the dynamic equations. Systematic experiments on simulations and on new data from developing brain demonstrate that RNA-ODE substan-tially improves many aspects of standard single-cell analysis. By leveraging temporal dynamics, RNA-ODE more accurately estimates cell state lineage and pseudo-time compared to previous state-of-the-art methods. It also infers gene regulatory networks and identifies influential genes whose expres-sion changes can decide cell fate. We expect RNA-ODE to be a Swiss army knife that aids many facets of-cell RNA-seq analysis. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 30 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[2]  
[Anonymous], 2017, Classification and regression trees, DOI [DOI 10.1201/9781315139470-8, 10.1201/9781315139470-8]
[3]  
[Anonymous], COMPUTATIONAL MODELI
[4]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[5]   Generalizing RNA velocity to transient cell states through dynamical modeling [J].
Bergen, Volker ;
Lange, Marius ;
Peidli, Stefan ;
Wolf, F. Alexander ;
Theis, Fabian J. .
NATURE BIOTECHNOLOGY, 2020, 38 (12) :1408-1414
[6]   Autism-specific maternal autoantibodies recognize critical proteins in developing brain [J].
Braunschweig, D. ;
Krakowiak, P. ;
Duncanson, P. ;
Boyce, R. ;
Hansen, R. L. ;
Ashwood, P. ;
Hertz-Picciotto, I. ;
Pessah, I. N. ;
Van de Water, J. .
TRANSLATIONAL PSYCHIATRY, 2013, 3 :e277-e277
[7]   Roles of Sox4 in central nervous system development [J].
Cheung, M ;
Abu-Elmagd, M ;
Clevers, H ;
Scotting, PJ .
MOLECULAR BRAIN RESEARCH, 2000, 79 (1-2) :180-191
[8]   Fate mapping and lineage analyses demonstrate the production of a large number of striatal neuroblasts after transforming growth factor α and noggin striatal infusions into the dopamine-depleted striatum [J].
de Chevigny, Antoine ;
Cooper, Oliver ;
Vinuela, Angel ;
Reske-Nielsen, Casper ;
Lagace, Diane C. ;
Eisch, Amelia J. ;
Isacson, Ole .
STEM CELLS, 2008, 26 (09) :2349-2360
[9]  
Dennis Daniel, 2016, Trends Dev Biol, V9, P77
[10]   PRINCIPAL CURVES [J].
HASTIE, T ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (406) :502-516