On a boundary value problem for first-order scalar functional differential equations

被引:23
作者
Hakl, R
Lomtatidze, A
Puza, B
机构
[1] Acad Sci Czech Republ, Inst Math, Brno 61662, Czech Republic
[2] Masaryk Univ, Fac Sci, Dept Math Anal, Brno 66295, Czech Republic
关键词
boundary value problems; first-order scalar functional differential equations; existence and uniqueness of a solution;
D O I
10.1016/S0362-546X(02)00305-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonimprovable effective sufficient conditions for solvability and unique solvability of the boundary value problem u'(t) = F(u)(t), u(a) = h(u), where F : C([a, b]; R) --> L([a, b]; R) is a continuous operator satisfying the Caratheodory condition and h : C([a, b]; R) --> R is a continuous functional, are established. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:391 / 405
页数:15
相关论文
共 31 条
[1]  
[Anonymous], 2000, MEM DIFFER EQU MATH
[2]  
[Anonymous], INITIAL BOUNDARY VAL
[3]  
[Anonymous], ARCH MATH
[4]  
Azbelev N.V., 1991, Introduction to the Theory of Functional Differential Equations
[5]  
Azbelev N.V., 1996, Mem. Differ. Equ. Math. Phys, V8, P1
[6]  
Bernfeld S., 1974, INTRO NONLINEAR BOUN
[7]   On Cauchy problem for first order nonlinear functional differential equations of non-Volterra's type [J].
Bravyi, E ;
Hakl, R ;
Lomtatidze, A .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (04) :673-690
[8]   Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations [J].
Bravyi, E ;
Hakl, R ;
Lomtatidze, A .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (03) :513-530
[9]  
BRAVYI E., 2000, GEORGIAN MATH J, V7, P627
[10]  
EARL A., 1955, THEORY ORDINARY DIFF