E2F1 promotes hepatic gluconeogenesis and contributes to hyperglycemia during diabetes

被引:24
作者
Giralt, Albert [1 ]
Denechaud, Pierre-Damien [1 ,6 ]
Lopez-Mejia, Isabel C. [1 ]
Delacuisine, Brigitte [1 ]
Blanchet, Emilie [2 ]
Bonner, Caroline [3 ,4 ]
Patton, Francois [4 ]
Annicotte, Jean-Sebastien [5 ]
Fajas, Lluis [1 ]
机构
[1] Univ Lausanne, Ctr Integrat Genom, Lausanne, Switzerland
[2] INRA, UMR Dynam Musculaire & Metab, CAMPUS SUPAGRO 2 Pl Viala, Montpellier, France
[3] Inst Pasteur, Lille, France
[4] Ctr Hosp Reg Univ, INSERM UMR1190, European Genom Inst Diabet, Lille, France
[5] Univ Lille, CHU Lille, CNRS, Inst Pasteur Lille,UMR EGID 8199, F-59000 CNRS, France
[6] INSERM, UMR1048, Inst Malad Metab & Cardiovasc, 1 Ave Poulhes, Toulouse, France
基金
瑞士国家科学基金会;
关键词
Gluconeogenesis; E2F1; Liver metabolism; Hyperglycemia; Diabetes; Cell cycle regulators; INSULIN-RESISTANCE; GLUCOSE-METABOLISM; EXPRESSION; ACTIVATION; CDK4;
D O I
10.1016/j.molmet.2018.02.011
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Aberrant hepatic glucose production contributes to the development of hyperglycemia and is a hallmark of type 2 diabetes. In a recent study, we showed that the transcription factor E2F1, a component of the cell cycle machinery, contributes to hepatic steatosis through the transcriptional regulation of key lipogenic enzymes. Here, we investigate if E2F1 contributes to hyperglycemia by regulating hepatic gluconeogenesis. Methods: We use different genetic models to investigate if E2F1 regulates gluconeogenesis in primary hepatocytes and in vivo. We study the impact of depleting E2F1 or inhibiting E2F1 activity in diabetic mouse models to evaluate if this transcription factor contributes to hyperglycemia during insulin resistance. We analyze E2F1 mRNA levels in the livers of human diabetic patients to assess the relevance of E2F1 in human pathophysiology. Results: Lack of E2F1 impaired gluconeogenesis in primary hepatocytes. Conversely, E2F1 overexpression increased glucose production in hepatocytes and in mice. Several genetic models showed that the canonical CDK4-RB1-E2F1 pathway is directly involved in this regulation. E2F1 mRNA levels were increased in the livers from human diabetic patients and correlated with the expression of the gluconeogenic enzyme Pck1. Genetic invalidation or pharmacological inhibition of E2F1 improved glucose homeostasis in diabetic mouse models. Conclusions: Our study unveils that the transcription factor E2F1 contributes to mammalian glucose homeostasis by directly controlling hepatic gluconeogenesis. Together with our previous finding that E2F1 promotes hepatic steatosis, the data presented here show that E2F1 contributes to both hyperlipidemia and hyperglycemia in diabetes, suggesting that specifically targeting E2F1 in the liver could be an interesting strategy for therapies against type 2 diabetes. (C) 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:104 / 112
页数:9
相关论文
共 29 条
[1]   The CDK4-pRB-E2F1 pathway controls insulin secretion [J].
Annicotte, Jean-Sebastien ;
Blanchet, Emilie ;
Chavey, Carine ;
Iankova, Irena ;
Costes, Safia ;
Assou, Said ;
Teyssier, Jacques ;
Dalle, Stephane ;
Sardet, Claude ;
Fajas, Lluis .
NATURE CELL BIOLOGY, 2009, 11 (08) :1017-U247
[2]   Cdkn2a/p16Ink4a Regulates Fasting-Induced Hepatic Gluconeogenesis Through the PKA-CREB-PGC1α Pathway [J].
Bantubungi, Kadiombo ;
Hannou, Sarah-Anissa ;
Caron-Houde, Sandrine ;
Vallez, Emmanuelle ;
Baron, Morgane ;
Lucas, Anthony ;
Bouchaert, Emmanuel ;
Paumelle, Rejane ;
Tailleux, Anne ;
Staels, Bart .
DIABETES, 2014, 63 (10) :3199-3209
[3]   The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans [J].
Benhamed, Fadila ;
Denechaud, Pierre-Damien ;
Lemoine, Maud ;
Robichon, Celine ;
Moldes, Marthe ;
Bertrand-Michel, Justine ;
Ratziu, Vlad ;
Serfaty, Lawrence ;
Housset, Chantal ;
Capeau, Jacqueline ;
Girard, Jean ;
Guillou, Herve ;
Postic, Catherine .
JOURNAL OF CLINICAL INVESTIGATION, 2012, 122 (06) :2176-2194
[4]   E2F transcription factor-1 regulates oxidative metabolism [J].
Blanchet, Emilie ;
Annicotte, Jean-Sebastien ;
Lagarrigue, Sylviane ;
Aguilar, Victor ;
Clape, Cyrielle ;
Chavey, Carine ;
Fritz, Vanessa ;
Casas, Francois ;
Apparailly, Florence ;
Auwerx, Johan ;
Fajas, Lluis .
NATURE CELL BIOLOGY, 2011, 13 (09) :1146-U184
[5]   cAMP-Dependent Activation of Mammalian Target of Rapamycin (mTOR) in Thyroid Cells. Implication in Mitogenesis and Activation of CDK4 [J].
Blancquaert, Sara ;
Wang, Lifu ;
Paternot, Sabine ;
Coulonval, Katia ;
Dumont, Jacques E. ;
Harris, Thurl E. ;
Roger, Pierre P. .
MOLECULAR ENDOCRINOLOGY, 2010, 24 (07) :1453-1468
[6]   Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization [J].
Bonhoure, Nicolas ;
Bounova, Gergana ;
Bernasconi, David ;
Praz, Viviane ;
Lammers, Fabienne ;
Canella, Donatella ;
Willis, Ian M. ;
Herr, Winship ;
Hernandez, Nouria ;
Delorenzi, Mauro .
GENOME RESEARCH, 2014, 24 (07) :1157-1168
[7]   Selective versus total insulin resistance: A pathogenic paradox [J].
Brown, Michael S. ;
Goldstein, Joseph L. .
CELL METABOLISM, 2008, 7 (02) :95-96
[8]   Promoter polymorphism in PCK1 (phosphoenolpyruvate carboxykinase gene) associated with type 2 diabetes mellitus [J].
Cao, HN ;
van der Veer, E ;
Ban, MR ;
Hanley, AJG ;
Zinman, B ;
Harris, SB ;
Young, TK ;
Pickering, JG ;
Hegele, RA .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2004, 89 (02) :898-903
[9]   Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice [J].
Choi, Youngshim ;
Jang, Suhyeon ;
Choi, Myung-Sook ;
Ryoo, Zae Young ;
Park, Taesun .
JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY, 2016, 72 (02) :157-167
[10]   E2F1, a Novel Regulator of Metabolism [J].
Denechaud, Pierre-Damien ;
Fajas, Lluis ;
Giralt, Albert .
FRONTIERS IN ENDOCRINOLOGY, 2017, 8