Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases

被引:44
作者
Ebrahimi, Ghasem [1 ,2 ]
Pakchin, Parvin Samadi [1 ]
Shamloo, Amir [3 ]
Mota, Ali [2 ]
de la Guardia, Miguel [4 ]
Omidian, Hossein [5 ]
Omidi, Yadollah [5 ]
机构
[1] Tabriz Univ Med Sci, Res Ctr Pharmaceut Nanotechnol, Biomed Inst, Tabriz, Iran
[2] Tabriz Univ Med Sci, Fac Med Sci, Dept Biochem & Clin Labs, Tabriz, Iran
[3] Sharif Univ Technol, Sch Mech Engn, Tehran, Iran
[4] Univ Valencia, Dept Analyt Chem, Valencia, Spain
[5] Nova Southeastern Univ, Coll Pharm, Dept Pharmaceut Sci, Ft Lauderdale, FL 33328 USA
关键词
Biosensor; Electrochemical detection; Label-free sensing; Microfluidics; Point-of-care; HIGHLY SENSITIVE DETECTION; CANCER-CELLS; PAPER; SENSOR; CHIP; APTASENSOR; DNA; IMMUNOSENSOR; PLATFORM; SYSTEM;
D O I
10.1007/s00604-022-05316-3
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The integration of microfluidics with electrochemical analysis has resulted in the development of single miniaturized detection systems, which allows the precise control of sample volume with multi-analyte detection capability in a cost- and time-effective manner. Microfluidic electrochemical sensing devices (MESDs) can potentially serve as precise sensing and monitoring systems for the detection of molecular markers in various detrimental diseases. MESDs offer several advantages, including (i) automated sample preparation and detection, (ii) low sample and reagent requirement, (iii) detection of multianalyte in a single run, (iv) multiplex analysis in a single integrated device, and (v) portability with simplicity in application and disposability. Label-free MESDs can serve an affordable real-time detection with a simple analysis in a short processing time, providing point-of-care diagnosis/detection possibilities in precision medicine, and environmental analysis. In the current review, we elaborate on label-free microfluidic biosensors, provide comprehensive insights into electrochemical detection techniques, and discuss the principles of label-free microfluidic-based sensing approaches.
引用
收藏
页数:18
相关论文
共 101 条
[1]   Intrinsic Enzyme-like Activities of Cerium Oxide Nanocomposite and Its Application for Extracellular H2O2 Detection Using an Electrochemical Microfluidic Device [J].
Alizadeh, Negar ;
Salimi, Abdollah ;
Sham, Tsun-Kong ;
Bazylewski, Paul ;
Fanchini, Giovanni .
ACS OMEGA, 2020, 5 (21) :11883-11894
[2]   Droplet-based microfluidics in biomedical applications [J].
Amirifar, Leyla ;
Besanjideh, Mohsen ;
Nasiri, Rohollah ;
Shamloo, Amir ;
Nasrollahi, Fatemeh ;
de Barros, Natan Roberto ;
Davoodi, Elham ;
Erdem, Ahmet ;
Mahmoodi, Mahboobeh ;
Hosseini, Vahid ;
Montazerian, Hossein ;
Jahangiry, Jamileh ;
Darabi, Mohammad Ali ;
Haghniaz, Reihaneh ;
Dokmeci, Mehmet R. ;
Annabi, Nasim ;
Ahadian, Samad ;
Khademhosseini, Ali .
BIOFABRICATION, 2022, 14 (02)
[3]   Cost-effective smartphone-based reconfigurable electrochemical instrument for alcohol determination in whole blood samples [J].
Aymerich, Joan ;
Marquez, Augusto ;
Teres, Lluis ;
Munoz-Berbel, Xavier ;
Jimenez, Cecilia ;
Dominguez, Carlos ;
Serra-Graells, Francesc ;
Dei, Michele .
BIOSENSORS & BIOELECTRONICS, 2018, 117 :736-742
[4]   Fully Stretchable Capillary Microfluidics-Integrated Nanoporous Gold Electrochemical Sensor for Wearable Continuous Glucose Monitoring [J].
Bae, Chan Wool ;
Phan Tan Toi ;
Kim, Bo Yeong ;
Lee, Won Il ;
Lee, Han Byeol ;
Hanif, Adeela ;
Lee, Eung Hyuk ;
Lee, Nae-Eung .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (16) :14567-14575
[5]   Polymer microfabrication technologies for microfluidic systems [J].
Becker, Holger ;
Gaertner, Claudia .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 390 (01) :89-111
[6]   A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis [J].
Ben-Yoav, Hadar ;
Dykstra, Peter H. ;
Bentley, William E. ;
Ghodssi, Reza .
BIOSENSORS & BIOELECTRONICS, 2015, 64 :579-585
[7]   A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization analysis [J].
Ben-Yoav, Hadar ;
Dykstra, Peter H. ;
Bentley, William E. ;
Ghodssi, Reza .
BIOSENSORS & BIOELECTRONICS, 2012, 38 (01) :114-120
[8]   A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: Non-enzymatic paper-based microfluidic determination of creatinine in human blood serum [J].
Boobphahom, Siraprapa ;
Ruecha, Nipapan ;
Rodthongkum, Nadnudda ;
Chailapakul, Orawon ;
Remcho, Vincent T. .
ANALYTICA CHIMICA ACTA, 2019, 1083 :110-118
[9]   Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles [J].
Channon, Robert B. ;
Yang, Yuanyuan ;
Feibelman, Kristen M. ;
Geiss, Brian J. ;
Dandy, David S. ;
Henry, Charles S. .
ANALYTICAL CHEMISTRY, 2018, 90 (12) :7777-7783
[10]   Development of a lab-on-a-chip method for rapid assay of Xylella fastidiosa subsp pauca strain CoDiRO [J].
Chiriaco, Maria Serena ;
Luvisi, Andrea ;
Primiceri, Elisabetta ;
Sabella, Erika ;
De Bellis, Luigi ;
Maruccio, Giuseppe .
SCIENTIFIC REPORTS, 2018, 8