Classical simulation of infinite-size quantum lattice systems in one spatial dimension

被引:745
作者
Vidal, G. [1 ]
机构
[1] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
关键词
D O I
10.1103/PhysRevLett.98.070201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Invariance under translation is exploited to efficiently simulate one-dimensional quantum lattice systems in the limit of an infinite lattice. Both the computation of the ground state and the simulation of time evolution are considered.
引用
收藏
页数:4
相关论文
共 27 条
[11]  
PORRAS D, CONDMAT0504717
[12]   The density-matrix renormalization group [J].
Schollwöck, U .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :259-315
[13]  
SHI Y, QUANTPH0511070
[14]  
SORNBORGER AT, QUANTPH9809009
[15]   GENERAL-THEORY OF FRACTAL PATH-INTEGRALS WITH APPLICATIONS TO MANY-BODY THEORIES AND STATISTICAL PHYSICS [J].
SUZUKI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) :400-407
[16]   FRACTAL DECOMPOSITION OF EXPONENTIAL OPERATORS WITH APPLICATIONS TO MANY-BODY THEORIES AND MONTE-CARLO SIMULATIONS [J].
SUZUKI, M .
PHYSICS LETTERS A, 1990, 146 (06) :319-323
[17]   Density matrix renormalization group and periodic boundary conditions: A quantum information perspective [J].
Verstraete, F ;
Porras, D ;
Cirac, JI .
PHYSICAL REVIEW LETTERS, 2004, 93 (22)
[18]   Matrix product density operators:: Simulation of finite-temperature and dissipative systems -: art. no. 207204 [J].
Verstraete, F ;
García-Ripoll, JJ ;
Cirac, JI .
PHYSICAL REVIEW LETTERS, 2004, 93 (20) :207204-1
[19]  
Verstraete F., CONDMAT0407066
[20]   Efficient simulation of one-dimensional quantum many-body systems [J].
Vidal, G .
PHYSICAL REVIEW LETTERS, 2004, 93 (04) :040502-1