Tuning a physically-based model of the air-sea gas transfer velocity

被引:27
作者
Jeffery, C. D. [1 ]
Robinson, I. S. [2 ]
Woolf, D. K.
机构
[1] NOAA, Natl Oceanog Data Ctr, Silver Spring, MD 20910 USA
[2] Natl Oceanog Ctr, Southampton, Hants, England
关键词
Gas exchange; Air-water interface; Air-sea interaction; Upper ocean; Diurnal warming; 1-D modelling; Transfer velocity; Carbon dioxide; GOTM; CO2; EXCHANGE; TURBULENCE CLOSURE; MIXED-LAYER; WIND-SPEED; OCEAN; FLUXES; WATER; PARAMETERIZATION; TEMPERATURE; DIMETHYLSULFIDE;
D O I
10.1016/j.ocemod.2009.09.001
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO2 of 16.4 +/- 5.6 cm h(-1) when using global mean winds of 6.89 m s(-1) from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DIMS (a relatively soluble gas) is only 11.9 cm h(-1) whilst for less soluble methane the estimate is 18.0 cm h(-1). (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 43 条
[1]   The effect of bubble-mediated gas transfer on purposeful dual-gaseous tracer experiments [J].
Asher, WE ;
Wanninkhof, R .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C5) :10555-10560
[2]   DMS sea-air transfer velocity: Direct measurements by eddy covariance and parameterization based on the NOAA/COARE gas transfer model [J].
Blomquist, BW ;
Fairall, CW ;
Huebert, BJ ;
Kieber, DJ ;
Westby, GR .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (07)
[3]   ON THE PERFORMANCE OF A MIXED-LAYER MODEL-BASED ON THE KAPPA-EPSILON TURBULENCE CLOSURE [J].
BURCHARD, H ;
BAUMERT, H .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1995, 100 (C5) :8523-8540
[4]  
Burchard H, 2001, J PHYS OCEANOGR, V31, P1943, DOI 10.1175/1520-0485(2001)031<1943:CAOFSM>2.0.CO
[5]  
2
[6]   HENRY LAW CONSTANTS FOR DIMETHYLSULFIDE IN FRESH-WATER AND SEAWATER [J].
DACEY, JWH ;
WAKEHAM, SG ;
HOWES, BL .
GEOPHYSICAL RESEARCH LETTERS, 1984, 11 (10) :991-994
[7]   Parameterization and micrometeorological measurement of air-sea gas transfer [J].
Fairaill, CW ;
Hare, JE ;
Edson, JB ;
McGillis, W .
BOUNDARY-LAYER METEOROLOGY, 2000, 96 (1-2) :63-105
[8]   Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment [J].
Fairall, CW ;
Bradley, EF ;
Rogers, DP ;
Edson, JB ;
Young, GS .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1996, 101 (C2) :3747-3764
[9]   Calculating long-term global air-sea flux of carbon dioxide using scatterometer, passive microwave, and model reanalysis wind data [J].
Fangohr, Susanne ;
Woolf, David K. ;
Jeffery, Christopher D. ;
Robinson, Ian S. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2008, 113 (C9)
[10]   Seasonal mixed layer heat budget of the tropical Atlantic Ocean [J].
Foltz, GR ;
Grodsky, SA ;
Carton, JA ;
McPhaden, MJ .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2003, 108 (C5)