On opinion formation and synchronization in multiplex networks

被引:0
作者
Bogojeska, Aleksandra [1 ]
Filiposka, Sonja [1 ]
Mishkovski, Igor [1 ]
Kocarev, Ljupco [1 ]
机构
[1] Fac Comp Sci & Engn, Skopje 1000, North Macedonia
来源
2013 21ST TELECOMMUNICATIONS FORUM (TELFOR) | 2013年
关键词
Complex networks; Multiplex networks; MSF; Synchronization; DYNAMICS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the process of synchronization that takes place on multiplex networks, i.e., on a set of networks linked through interconnected layers. As a measure for synchronization we use the eigenratio between the largest and the smallest eigenvalue of the Laplacian matrix of the multiplex graph. Using this measure we analyze how the synchronization depends on the weight of the interconnection links in a given multiplex network. Furthermore, the main results of this work show that even though a network has a bigger eigenratio than other networks, when it is multiplexed with other networks its synchronization rate can be slowed. The results from this work can be easily applied in modeling and analyzing the process of opinion formation in social networks and synchronization in Smart Grid.
引用
收藏
页码:172 / 175
页数:4
相关论文
共 21 条
  • [1] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [2] Synchronization of networks with prescribed degree distributions
    Atay, FM
    Biyikoglu, T
    Jost, J
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2006, 53 (01) : 92 - 98
  • [3] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [4] Connection graph stability method for synchronized coupled chaotic systems
    Belykh, VN
    Belykh, IV
    Hasler, M
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) : 159 - 187
  • [5] Synchronization in random networks with given expected degree sequences
    Checco, Paolo
    Biey, Mario
    Kocarev, Ljupco
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 35 (03) : 562 - 577
  • [6] ERDOS P, 1960, B INT STATIST INST, V38, P343
  • [7] Diffusion Dynamics on Multiplex Networks
    Gomez, S.
    Diaz-Guilera, A.
    Gomez-Gardenes, J.
    Perez-Vicente, C. J.
    Moreno, Y.
    Arenas, A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (02)
  • [8] Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions
    Nishikawa, Takashi
    Motter, Adilson E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (23) : 10342 - 10347
  • [9] Master stability functions for synchronized coupled systems
    Pecora, LM
    Carroll, TL
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (10) : 2109 - 2112
  • [10] Pikovsky Arkady., 2003, SYNCHRONIZATION