On organizing principles of discrete differential geometry. Geometry of spheres

被引:33
作者
Bobenko, A. I. [1 ]
Suris, Yu. B.
机构
[1] Tech Univ Berlin, Inst Math, Berlin, Germany
[2] Tech Univ Munich, Zentrum Math, D-8000 Munich, Germany
关键词
D O I
10.1070/RM2007v062n01ABEH004380
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.
引用
收藏
页码:1 / 43
页数:43
相关论文
共 67 条
[1]   Classification of integrable equations on quad-graphs. The consistency approach [J].
Adler, VE ;
Bobenko, AI ;
Suris, YB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (03) :513-543
[2]  
AKHMETSHIN AA, 1999, P STEKLOV I MATH, V255, P16
[3]  
Alexandrov, 2005, CONVEX POLYHEDRA
[4]   Anisotropic polygonal remeshing [J].
Alliez, P ;
Cohen-Steiner, D ;
Devillers, O ;
Lévy, B ;
Desbrun, M .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :485-493
[5]  
[Anonymous], 1929, VORLESUNGEN DIFFEREN
[6]  
[Anonymous], 1922, LEZIONI GEOMETRIA DI
[7]  
[Anonymous], 1992, LIE SPHERE GEOMETRY
[8]  
BERGER M, 1979, ACTION GROUPES ESPAC
[9]  
BIANCHI L, 1922, LEZIONI GEOMETRIA DI, V2
[10]  
Bianchi L., 1918, ANN MAT SER 3, V27, P183