Smooth nonlinear fitting scheme for analog multiplierless implementation of Hindmarsh-Rose neuron model

被引:37
作者
Cai, Jianming [1 ]
Bao, Han [1 ]
Xu, Quan [1 ]
Hua, Zhongyun [2 ]
Bao, Bocheng [1 ]
机构
[1] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Circuit implementation; Hindmarsh– Rose (HR) neuron model; Multiplier; Nonlinear fitting; Nonlinearity; ELECTRICAL-ACTIVITY;
D O I
10.1007/s11071-021-06453-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The Hindmarsh-Rose (HR) neuron model is built to describe the neuron electrical activities. Due to the polynomial nonlinearities, multipliers are required to implement the HR neuron model in analog. In order to avoid the multipliers, this brief presents a novel smooth nonlinear fitting scheme. We first construct two nonlinear fitting functions using the composite hyperbolic tangent functions and then implement an analog multiplierless circuit for the two-dimensional (2D) and three-dimensional (3D) HR neuron models. To exhibit the nonlinear fitting effects, numerical simulations and hardware experiments for the fitted HR neuron model are provided successively. The results show that the fitted HR neuron model with analog multiplierless circuit can display different operation patterns of resting, periodic spiking, and periodic/chaotic bursting, entirely behaving like the original HR neuron model. The analog multiplierless circuit has the advantage of low implementation cost and thereby it is suitable for hardware implementation of large-scale neural networks.
引用
收藏
页码:4379 / 4389
页数:11
相关论文
共 41 条
  • [1] Silicon-Neuron Design: A Dynamical Systems Approach
    Arthur, John V.
    Boahen, Kwabena A.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (05) : 1034 - 1043
  • [2] Memristive neuron model with an adapting synapse and its hardware experiments
    Bao, BoCheng
    Zhu, YongXin
    Ma, Jun
    Bao, Han
    Wu, HuaGan
    Chen, Mo
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (05) : 1107 - 1117
  • [3] Global multistability and analog circuit implementation of an adapting synapse-based neuron model
    Bao, Bocheng
    Zhu, Yongxin
    Li, Chengqing
    Bao, Han
    Xu, Quan
    [J]. NONLINEAR DYNAMICS, 2020, 101 (02) : 1105 - 1118
  • [4] Chaotic Bursting Dynamics and Coexisting Multistable Firing Patterns in 3D Autonomous Morris-Lecar Model and Microcontroller-Based Validations
    Bao, Bocheng
    Yang, Qinfeng
    Zhu, Lei
    Bao, Han
    Xu, Quan
    Yu, Yajuan
    Chen, Mo
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (10):
  • [5] Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network
    Bao, Bocheng
    Qian, Hui
    Wang, Jiang
    Xu, Quan
    Chen, Mo
    Wu, Huagan
    Yu, Yajuan
    [J]. NONLINEAR DYNAMICS, 2017, 90 (04) : 2359 - 2369
  • [6] Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit
    Bao, Han
    Liu, Wenbo
    Chen, Mo
    [J]. NONLINEAR DYNAMICS, 2019, 96 (03) : 1879 - 1894
  • [7] Hidden Bursting Firings and Bifurcation Mechanisms in Memristive Neuron Model With Threshold Electromagnetic Induction
    Bao, Han
    Hu, Aihuang
    Liu, Wenbo
    Bao, Bocheng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (02) : 502 - 511
  • [8] Artificial Electrical Morris-Lecar Neuron
    Behdad, Rachid
    Binczak, Stephane
    Dmitrichev, Alexey S.
    Nekorkin, Vladimir I.
    Bilbault, Jean-Marie
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (09) : 1875 - 1884
  • [9] Mean Absolute Percentage Error for regression models
    de Myttenaere, Arnaud
    Golden, Boris
    Le Grand, Benedicte
    Rossi, Fabrice
    [J]. NEUROCOMPUTING, 2016, 192 : 38 - 48
  • [10] A brief history of excitable map-based neurons and neural networks
    Girardi-Schappo, M.
    Tragtenberg, M. H. R.
    Kinouchi, O.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2013, 220 (02) : 116 - 130