α-Pinene, Limonene, and Cyclohexene Secondary Organic Aerosol Hygroscopicity and Oxidation Level as a Function of Volatility

被引:4
作者
Cain, Kerrigan P. [1 ]
Liangou, Aikaterini [2 ]
Davidson, Michael L. [1 ]
Pandis, Spyros N. [1 ,2 ,3 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Univ Patras, Dept Chem Engn, Patras, Greece
[3] ICE HT, Inst Chem Engn Sci, Patras, Greece
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
Cloud condensation nuclei; Isothermal dilution; Organic compounds; Thermodenuder; NUCLEI CCN ACTIVITY; CHEMICAL-COMPOSITION; OZONOLYSIS; SOA; CYCLOALKENES; ACTIVATION; PRODUCTS; STATE; LINK; THERMODENUDER;
D O I
10.4209/aaqr.2020.08.0511
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The hygroscopicity and oxidation level of secondary organic aerosol (SOA) produced in an atmospheric simulation chamber were measured as a function of volatility. The experimental setup combines thermodenuding, isothermal dilution, aerosol mass spectroscopy, and size-resolved cloud condensation nuclei measurements to separate the SOA by volatility and then measure its physical (hygroscopicity via the hygroscopicity parameter, kappa) and chemical (oxidation level via the oxygen-to-carbon ratio, O:C) properties. The technique was applied to SOA from the ozonolysis of alpha-pinene, limonene, and cyclohexene. The O:C and kappa of the alpha-pinene ozonolysis SOA decreased as volatility decreased. The semi-volatile and the low volatility organic compounds produced during limonene ozonolysis have similar O:C and kappa values, but the corresponding extremely low volatility organic compounds have significantly lower oxygen content and hygroscopicity. The average O:C of the cyclohexene ozonolysis SOA increased, but the average kappa decreased as volatility decreased. These results suggest that some organic aerosol (OA) systems have a more complex relationship between hygroscopicity, oxidation level, and volatility than originally thought. The two-dimensional volatility basis set framework can help in integrating these results and providing explanations of the measured hygroscopicity. Use of this technique with different OA systems, both laboratory and ambient, can supply parameters that can be incorporated in atmospheric chemical transport models.
引用
收藏
页数:18
相关论文
共 60 条
[1]   Determining the link between hygroscopicity and composition for semi-volatile aerosol species [J].
Alroe, Joel ;
Cravigan, Luke T. ;
Mallet, Marc D. ;
Ristovski, Zoran D. ;
Miljevic, Branka ;
Osuagwu, Chiemeriwo G. ;
Johnson, Graham R. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (07) :4361-4372
[2]   A Microtensiometer To Probe the Effect of Radius of Curvature on Surfactant Transport to a Spherical Interface [J].
Alvarez, Nicolas J. ;
Walker, Lynn M. ;
Anna, Shelley L. .
LANGMUIR, 2010, 26 (16) :13310-13319
[3]   Water-soluble SOA from Alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity [J].
Asa-Awuku, A. ;
Nenes, A. ;
Gao, S. ;
Flagan, R. C. ;
Seinfeld, J. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (04) :1585-1597
[4]   Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer [J].
Bahreini, R ;
Keywood, MD ;
Ng, NL ;
Varutbangkul, V ;
Gao, S ;
Flagan, RC ;
Seinfeld, JH ;
Worsnop, DR ;
Jimenez, JL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (15) :5674-5688
[5]   Challenges in determining atmospheric organic aerosol volatility distributions using thermal evaporation techniques [J].
Cain, Kerrigan P. ;
Karnezi, Eleni ;
Pandis, Spyros N. .
AEROSOL SCIENCE AND TECHNOLOGY, 2020, 54 (08) :941-957
[6]   A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions [J].
Cain, Kerrigan P. ;
Pandis, Spyros N. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (12) :4865-4876
[7]   Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications [J].
Canagaratna, M. R. ;
Jimenez, J. L. ;
Kroll, J. H. ;
Chen, Q. ;
Kessler, S. H. ;
Massoli, P. ;
Hildebrandt Ruiz, L. ;
Fortner, E. ;
Williams, L. R. ;
Wilson, K. R. ;
Surratt, J. D. ;
Donahue, N. M. ;
Jayne, J. T. ;
Worsnop, D. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (01) :253-272
[8]   On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States [J].
Cerully, K. M. ;
Bougiatioti, A. ;
Hite, J. R., Jr. ;
Guo, H. ;
Xu, L. ;
Ng, N. L. ;
Weber, R. ;
Nenes, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (15) :8679-8694
[9]   A chamber study of secondary organic aerosol formation by limonene ozonolysis [J].
Chen, X. ;
Hopke, P. K. .
INDOOR AIR, 2010, 20 (04) :320-328
[10]   An omnipresent diversity and variability in the chemical composition of atmospheric functionalized organic aerosol [J].
Ditto, Jenna C. ;
Barnes, Emily B. ;
Khare, Peeyush ;
Takeuchi, Masayuki ;
Joo, Taekyu ;
Bui, Alexander A. T. ;
Lee-Taylor, Julia ;
Eris, Gamze ;
Chen, Yunle ;
Aumont, Bernard ;
Jimenez, Jose L. ;
Nga Lee Ng ;
Griffin, Robert J. ;
Gentner, Drew R. .
COMMUNICATIONS CHEMISTRY, 2018, 1