Bound states of the NLS equation on metric graphs with localized nonlinearities

被引:30
作者
Serra, Enrico [1 ]
Tentarelli, Lorenzo [1 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat GL Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Minimax methods; Metric graphs; Nonlinear Schrodinger equation; Localized nonlinearity; Krasnosel'skii genus; CONCENTRATED NONLINEARITIES; SCHRODINGER-EQUATIONS; SPECTRAL STATISTICS; ORBITAL STABILITY; QUANTUM GRAPHS; WAVES;
D O I
10.1016/j.jde.2015.12.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence of multiple bound states of prescribed mass for the nonlinear Schrodinger equation on a noncompact metric graph. The main feature is that the nonlinearity is localized only in a compact part of the graph. Our main result states that for every integer , the equation possesses at least k solutions of prescribed mass, provided that the mass is large enough. These solutions arise as constrained critical points of the NLS energy functional. Estimates for the energy of the solutions are also established. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:5627 / 5644
页数:18
相关论文
共 26 条
  • [1] The Cauchy problem for the Schrodinger equation in dimension three with concentrated nonlinearity
    Adami, R
    Dell'Antonio, G
    Figari, R
    Teta, A
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03): : 477 - 500
  • [2] A class of nonlinear Schrodinger equations with concentrated nonlinearity
    Adami, R
    Teta, A
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (01) : 148 - 175
  • [3] Adami R., 2015, ARXIV150503714
  • [4] NLS ground states on graphs
    Adami, Riccardo
    Serra, Enrico
    Tilli, Paolo
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 743 - 761
  • [5] Constrained energy minimization and orbital stability for the NLS equation on a star graph
    Adami, Riccardo
    Cacciapuoti, Claudio
    Finco, Domenico
    Noja, Diego
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (06): : 1289 - 1310
  • [6] [Anonymous], CAMBRIDGE STUD ADV M
  • [7] [Anonymous], 1985, NONLINEAR FUNCTIONAL
  • [8] [Anonymous], 1986, CBMS REG C SER MATH
  • [9] [Anonymous], 1964, Topological Methods in the Theory of Nonlinear Integral Equations
  • [10] Normalized solutions of nonlinear Schrodinger equations
    Bartsch, Thomas
    de Valeriola, Sebastien
    [J]. ARCHIV DER MATHEMATIK, 2013, 100 (01) : 75 - 83