Applications of deep learning in electron microscopy

被引:37
作者
Treder, Kevin P. [1 ]
Huang, Chen [2 ]
Kim, Judy S. [1 ,2 ]
Kirkland, Angus, I [1 ,2 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, Oxon, England
[2] Rosalind Franklin Inst, Harwell Res Campus, Didcot OX11 0FA, Oxon, England
基金
英国工程与自然科学研究理事会;
关键词
artificial intelligence; machine learning; deep learning; electron microscopy; neural networks; cryo-EM; AUTOMATIC PARTICLE PICKUP; CONVOLUTIONAL NEURAL-NETWORKS; CRYO-EM; SEMANTIC SEGMENTATION; RECONSTRUCTION; IMAGES; CLASSIFICATION; RECOGNITION; ALGORITHMS; SIZE;
D O I
10.1093/jmicro/dfab043
中图分类号
TH742 [显微镜];
学科分类号
摘要
We review the growing use of machine learning in electron microscopy (EM) driven in part by the availability of fast detectors operating at kiloHertz frame rates leading to large data sets that cannot be processed using manually implemented algorithms. We summarize the various network architectures and error metrics that have been applied to a range of EM-related problems including denoising and inpainting. We then provide a review of the application of these in both physical and life sciences, highlighting how conventional networks and training data have been specifically modified for EM.
引用
收藏
页码:i100 / i115
页数:16
相关论文
共 188 条
[1]   Decoding crystallography from high-resolution electron imaging and diffraction datasets with deep learning [J].
Aguiar, J. A. ;
Gong, M. L. ;
Unocic, R. R. ;
Tasdizen, T. ;
Miller, B. D. .
SCIENCE ADVANCES, 2019, 5 (10)
[2]   DeepCryoPicker: fully automated deep neural network for single protein particle picking in cryo-EM [J].
Al-Azzawi, Adil ;
Ouadou, Anes ;
Max, Highsmith ;
Duan, Ye ;
Tanner, John J. ;
Cheng, Jianlin .
BMC BIOINFORMATICS, 2020, 21 (01)
[3]   A Super-Clustering Approach for Fully Automated Single Particle Picking in Cryo-EM [J].
Al-Azzawi, Adil ;
Ouadou, Anes ;
Tanner, John J. ;
Cheng, Jianlin .
GENES, 2019, 10 (09)
[4]   AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in Cryo-EM images [J].
Al-Azzawi, Adil ;
Ouadou, Anes ;
Tanner, John J. ;
Cheng, Jianlin .
BMC BIOINFORMATICS, 2019, 20 (1)
[5]   Quality classification via Raman identification and SEM analysis of carbon nanotube bundles using artificial neural networks [J].
Al-Khedher, M. A. ;
Pezeshki, C. ;
Lmchale, J. ;
Knorr, F. J. .
NANOTECHNOLOGY, 2007, 18 (35)
[6]  
[Anonymous], 2015, 3 INT C LEARN REPR I
[7]  
[Anonymous], 2017, Superhuman accuracy on the SNEMI3D connectomics challenge
[8]   Crowdsourcing the creation of image segmentation algorithms for connectomics [J].
Arganda-Carreras, Ignacio ;
Turaga, Srinivas C. ;
Berger, Daniel P. ;
Ciresan, Dan ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen ;
Laptev, Dmitry ;
Dwivedi, Sarvesh ;
Buhmann, Joachim M. ;
Liu, Ting ;
Seyedhosseini, Mojtaba ;
Tasdizen, Tolga ;
Kamentsky, Lee ;
Burget, Radim ;
Uher, Vaclav ;
Tan, Xiao ;
Sun, Changming ;
Pham, Tuan D. ;
Bas, Erhan ;
Uzunbas, Mustafa G. ;
Cardona, Albert ;
Schindelin, Johannes ;
Seung, H. Sebastian .
FRONTIERS IN NEUROANATOMY, 2015, 9 :1-13
[9]   Deep Learning for Validating and Estimating Resolution of Cryo-Electron Microscopy Density Maps [J].
Avramov, Todor Kirilov ;
Vyenielo, Dan ;
Gomez-Blanco, Josue ;
Adinarayanan, Swathi ;
Vargas, Javier ;
Si, Dong .
MOLECULES, 2019, 24 (06)
[10]   Advanced Steel Microstructural Classification by Deep Learning Methods [J].
Azimi, Seyed Majid ;
Britz, Dominik ;
Engstler, Michael ;
Fritz, Mario ;
Muecklich, Frank .
SCIENTIFIC REPORTS, 2018, 8