Inequalities between ground-state energies of Heisenberg models

被引:0
作者
Wojtkiewicz, Jacek [1 ]
Skolasinski, Rafal [1 ]
机构
[1] Univ Warsaw, Fac Phys, Dept Math Methods Phys, PL-00682 Warsaw, Poland
关键词
Heisenberg model; Quantum spin systems; Matrix inequalities; Exact diagonalization; Density matrix renormalization group; SPIN SYSTEMS; HUBBARD-MODEL; ORDER;
D O I
10.1016/j.physa.2014.09.042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lieb-Schupp inequality is the inequality between ground state energies of certain antiferromagnetic Heisenberg spin systems. In our paper, the numerical value of energy difference given by Lieb-Schupp inequality has been tested for spin systems in various geometries: chains, ladders and quasi-two-dimensional lattices. It turned out that this energy difference was strongly dependent on the class of the system. The relation between this difference and a fall-off of a correlation function has been empirically found and formulated as a conjecture. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 144
页数:11
相关论文
共 17 条
[1]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[2]  
Caspers W.J., 1989, Spin Systems
[4]   EXISTENCE OF NEEL ORDER IN SOME SPIN-1/2 HEISENBERG ANTIFERROMAGNETS [J].
KENNEDY, T ;
LIEB, EH ;
SHASTRY, BS .
JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (5-6) :1019-1030
[5]   EQUIVALENCE AND SOLUTION OF ANISOTROPIC SPIN-1 MODELS AND GENERALIZED T-J FERMION MODELS IN ONE DIMENSION [J].
KLUMPER, A ;
SCHADSCHNEIDER, A ;
ZITTARTZ, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16) :L955-L959
[6]   GROUND-STATE PROPERTIES OF A GENERALIZED VBS-MODEL [J].
KLUMPER, A ;
SCHADSCHNEIDER, A ;
ZITTARTZ, J .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1992, 87 (03) :281-287
[7]   Singlets and reflection symmetric spin systems [J].
Lieb, EH ;
Schupp, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 279 (1-4) :378-385
[8]   2 THEOREMS ON THE HUBBARD-MODEL [J].
LIEB, EH .
PHYSICAL REVIEW LETTERS, 1989, 62 (10) :1201-1204
[9]   Ground state properties of a fully frustrated quantum spin system [J].
Lieb, EH ;
Schupp, P .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5362-5365
[10]   THE SPIN-1/2 HEISENBERG-ANTIFERROMAGNET ON A SQUARE LATTICE AND ITS APPLICATION TO THE CUPROUS OXIDES [J].
MANOUSAKIS, E .
REVIEWS OF MODERN PHYSICS, 1991, 63 (01) :1-62