Prognostic power of a lipid metabolism gene panel for diffuse gliomas

被引:61
作者
Wu, Fan [1 ,2 ,3 ,4 ]
Zhao, Zheng [1 ,2 ,3 ,4 ]
Chai, Rui-Chao [1 ,2 ,3 ,4 ]
Liu, Yu-Qing [1 ,2 ,3 ,4 ]
Li, Guan-Zhang [1 ,2 ,3 ,4 ]
Jiang, Hao-Yu [1 ,2 ,3 ,4 ]
Jiang, Tao [1 ,2 ,3 ,4 ]
机构
[1] Capital Med Univ, Beijing Neurosurg Inst, Dept Mol Neuropathol, Nan Si Huan Xi Lu 119, Beijing 100070, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China
[3] Chinese Glioma Genome Atlas Network CGGA, Beijing, Peoples R China
[4] Asian Glioma Genome Atlas Network AGGA, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
diffuse glioma; lipid metabolism; prognosis; progression; signature; GLUCOSYLCERAMIDE SYNTHASE; DRUG-RESISTANCE; GLIOBLASTOMA; EXPRESSION; CANCER; SIGNATURE; TUMORS; GRADE;
D O I
10.1111/jcmm.14647
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Lipid metabolism reprogramming plays important role in cell growth, proliferation, angiogenesis and invasion in cancers. However, the diverse lipid metabolism programmes and prognostic value during glioma progression remain unclear. Here, the lipid metabolism-related genes were profiled using RNA sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Gene ontology (GO) and gene set enrichment analysis (GSEA) found that glioblastoma (GBM) mainly exhibited enrichment of glycosphingolipid metabolic progress, whereas lower grade gliomas (LGGs) showed enrichment of phosphatidylinositol metabolic progress. According to the differential genes of lipid metabolism between LGG and GBM, we developed a nine-gene set using Cox proportional hazards model with elastic net penalty, and the CGGA cohort was used for validation data set. Survival analysis revealed that the obtained gene set could differentiate the outcome of low- and high-risk patients in both cohorts. Meanwhile, multivariate Cox regression analysis indicated that this signature was a significantly independent prognostic factor in diffuse gliomas. Gene ontology and GSEA showed that high-risk cases were associated with phenotypes of cell division and immune response. Collectively, our findings provided a new sight on lipid metabolism in diffuse gliomas.
引用
收藏
页码:7741 / 7748
页数:8
相关论文
共 32 条
[1]   Lipid metabolic reprogramming in cancer cells [J].
Beloribi-Djefaflia, S. ;
Vasseur, S. ;
Guillaumond, F. .
ONCOGENESIS, 2016, 5 :e189-e189
[2]   m6A RNA methylation regulators contribute to malignant progression and have clinical prognostic impact in gliomas [J].
Chai, Rui-Chao ;
Wu, Fan ;
Wang, Qi-Xue ;
Zhang, Shu ;
Zhang, Ke-Nan ;
Liu, Yu-Qing ;
Zhao, Zheng ;
Jiang, Tao ;
Wang, Yong-Zhi ;
Kang, Chun-Sheng .
AGING-US, 2019, 11 (04) :1204-1225
[3]   Bioinformatic profiling identifies an immune-related risk signature for glioblastoma [J].
Cheng, Wen ;
Ren, Xiufang ;
Zhang, Chuanbao ;
Cai, Jinquan ;
Liu, Yang ;
Han, Sheng ;
Wu, Anhua .
NEUROLOGY, 2016, 86 (24) :2226-2234
[4]   High grade glioblastoma is associated with aberrant expression of ZFP57, a protein involved in gene imprinting, and of CPT1A and CPT1C that regulate fatty acid metabolism [J].
Cirillo, Alessandra ;
Di Salle, Anna ;
Petillo, Orsolina ;
Melone, Mariarosa A. B. ;
Grimaldi, Giovanna ;
Bellotti, Alfredo ;
Torelli, Giovanni ;
Santi, Maria Serena De' ;
Cantatore, Giovanna ;
Marinelli, Alfredo ;
Galderisi, Umberto ;
Peluso, Gianfranco .
CANCER BIOLOGY & THERAPY, 2014, 15 (06) :735-741
[5]   Malignant astrocytic glioma: genetics, biology, and paths to treatment [J].
Furnari, Frank B. ;
Fenton, Tim ;
Bachoo, Robert M. ;
Mukasa, Akitake ;
Stommel, Jayne M. ;
Stegh, Alexander ;
Hahn, William C. ;
Ligon, Keith L. ;
Louis, David N. ;
Brennan, Cameron ;
Chin, Lynda ;
DePinho, Ronald A. ;
Cavenee, Webster K. .
GENES & DEVELOPMENT, 2007, 21 (21) :2683-2710
[6]   Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis [J].
Grube, Susanne ;
Duenisch, Pedro ;
Freitag, Diana ;
Klausnitzer, Maren ;
Sakr, Yasser ;
Walter, Jan ;
Kalff, Rolf ;
Ewald, Christian .
JOURNAL OF NEURO-ONCOLOGY, 2014, 118 (02) :277-287
[7]   Hallmarks of Cancer: The Next Generation [J].
Hanahan, Douglas ;
Weinberg, Robert A. .
CELL, 2011, 144 (05) :646-674
[8]   GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients [J].
Hu, Xuchen ;
Matsumoto, Ken ;
Jung, Rachel S. ;
Weston, Thomas A. ;
Heizer, Patrick J. ;
He, Cuiwen ;
Sandoval, Norma P. ;
Allan, Christopher M. ;
Tu, Yiping ;
Vinters, Harry V. ;
Liau, Linda M. ;
Ellison, Rochelle M. ;
Morales, Jazmin E. ;
Baufeld, Lynn J. ;
Bayley, Nicholas A. ;
He, Liqun ;
Betsholtz, Christer ;
Beigneux, Anne P., I ;
Nathanson, David A. ;
Gerhardt, Holger ;
Young, Stephen G. ;
Fong, Loren G. ;
Jian, Haibo .
ELIFE, 2019, 8
[9]   Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources [J].
Huang, Da Wei ;
Sherman, Brad T. ;
Lempicki, Richard A. .
NATURE PROTOCOLS, 2009, 4 (01) :44-57
[10]   Robust meta-analysis of gene expression using the elastic net [J].
Hughey, Jacob J. ;
Butte, Atul J. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (12)