Atom-chip-based generation of entanglement for quantum metrology

被引:694
作者
Riedel, Max F. [1 ,2 ]
Boehi, Pascal [1 ,2 ]
Li, Yun [3 ,4 ]
Haensch, Theodor W. [1 ,2 ]
Sinatra, Alice [3 ]
Treutlein, Philipp [1 ,2 ,5 ]
机构
[1] Univ Munich, Fak Phys, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] ENS, Lab Kastler Brossel, F-75005 Paris, France
[4] E China Normal Univ, Dept Phys, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[5] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
关键词
COHERENCE; STATES; LIMIT;
D O I
10.1038/nature08988
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atom chips provide a versatile quantum laboratory for experiments with ultracold atomic gases(1). They have been used in diverse experiments involving low-dimensional quantum gases(2), cavity quantum electrodynamics(3), atom-surface interactions(4,5), and chip-based atomic clocks(6) and interferometers(7,8). However, a severe limitation of atom chips is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations(9), quantum information processing(10) and quantum metrology(11). Here we report the experimental generation of multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential(12). We use this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate(13); such states are a useful resource for quantum metrology. The observed reduction in spin noise of -3.7 +/- 0.4 dB, combined with the spin coherence, implies four-partite entanglement between the condensate atoms(14); this could be used to improve an interferometric measurement by -2.5 +/- 0.6 dB over the standard quantum limit(15). Our data show good agreement with a dynamical multi-mode simulation(16) and allow us to reconstruct the Wigner function(17) of the spin-squeezed condensate. The techniques reported here could be directly applied to chip-based atomic clocks, currently under development(18).
引用
收藏
页码:1170 / 1173
页数:4
相关论文
共 31 条
  • [1] Long-range order in electronic transport through disordered metal films
    Aigner, S.
    Della Pietra, L.
    Japha, Y.
    Entin-Wohlman, O.
    David, T.
    Salem, R.
    Folman, R.
    Schmiedmayer, J.
    [J]. SCIENCE, 2008, 319 (5867) : 1226 - 1229
  • [2] Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit
    Appel, J.
    Windpassinger, P. J.
    Oblak, D.
    Hoff, U. B.
    Kjaergaard, N.
    Polzik, E. S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (27) : 10960 - 10965
  • [3] Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip
    Boehi, Pascal
    Riedel, Max F.
    Hoffrogge, Johannes
    Reichel, Jakob
    Haensch, TheodorW.
    Treutlein, Philipp
    [J]. NATURE PHYSICS, 2009, 5 (08) : 592 - 597
  • [4] Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps
    Calarco, T
    Hinds, EA
    Jaksch, D
    Schmiedmayer, J
    Cirac, JI
    Zoller, P
    [J]. PHYSICAL REVIEW A, 2000, 61 (02): : 11
  • [5] Theoretical analysis of a realistic atom-chip quantum gate
    Charron, E.
    Cirone, M. A.
    Negretti, A.
    Schmiedmayer, J.
    Calarco, T.
    [J]. PHYSICAL REVIEW A, 2006, 74 (01):
  • [6] Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip
    Colombe, Yves
    Steinmetz, Tilo
    Dubois, Guilhem
    Linke, Felix
    Hunger, David
    Reichel, Jakob
    [J]. NATURE, 2007, 450 (7167) : 272 - U9
  • [7] DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO
  • [8] 2-E
  • [9] Squeezing and entanglement in a Bose-Einstein condensate
    Esteve, J.
    Gross, C.
    Weller, A.
    Giovanazzi, S.
    Oberthaler, M. K.
    [J]. NATURE, 2008, 455 (7217) : 1216 - 1219
  • [10] Magnetic microtraps for ultracold atoms
    Fortagh, Jozsef
    Zimmermann, Claus
    [J]. REVIEWS OF MODERN PHYSICS, 2007, 79 (01) : 235 - 289