Prior-Free Probabilistic Prediction of Future Observations

被引:14
作者
Martin, Ryan [1 ]
Lingham, Rama T. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] No Illinois Univ, Div Stat, De Kalb, IL 60115 USA
基金
美国国家科学基金会;
关键词
Disease count data; Environmental data; Inferential model; Plausibility; Prediction interval; System breakdown data; Validity; INFERENTIAL MODELS; INTERVALS; LIMIT;
D O I
10.1080/00401706.2015.1017116
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Prediction of future observations is a fundamental problem in statistics. Here we present a general approach based on the recently developed inferential model (IM) framework. We employ an IM-based technique to marginalize out the unknown parameters, yielding prior-free probabilistic prediction of future observables. Verifiable sufficient conditions are given for validity of our IM for prediction, and a variety of examples demonstrate the proposed method's performance. Thanks to its generality and ease of implementation, we expect that our IM-based method for prediction will be a useful tool for practitioners. Supplementary materials for this article are available online.
引用
收藏
页码:225 / 235
页数:11
相关论文
共 30 条
[1]   CALIBRATING PREDICTION REGIONS [J].
BERAN, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (411) :715-723
[2]   An upper prediction limit for the arithmetic mean of a lognormal random variable [J].
Bhaumik, DK ;
Gibbons, RD .
TECHNOMETRICS, 2004, 46 (02) :239-248
[3]  
Coelho CarlosA., 2007, The Indian Journal of Statistics (2003-), V69, P221
[4]   The Dempster-Shafer calculus for statisticians [J].
Dempster, A. P. .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 48 (02) :365-377
[5]  
Eaton M. L., 1989, GROUP INVARIANCE APP
[6]   ONE-SIDED PREDICTION INTERVALS FOR AT LEAST P OUT OF M FUTURE OBSERVATIONS FROM A NORMAL POPULATION [J].
FERTIG, KW ;
MANN, NR .
TECHNOMETRICS, 1977, 19 (02) :167-177
[7]  
Fisher R.A., 1959, Statistical Methods and Scientific Inference, V2nd ed.
[8]  
Fraser D. A. S., 1968, The Structure of Inference
[9]  
Geisser S, 1993, MONOGRAPHS STAT APPL, V55
[10]  
Hahn G. J., 1991, STAT INTERVALS GUIDE