Sciatic nerve regeneration after traumatic injury using magnetic targeted adipose-derived mesenchymal stem cells

被引:30
作者
Soto, Paula A. [1 ,2 ]
Vence, Marianela [2 ]
Pinero, Gonzalo M. [1 ,2 ]
Coral, Diego F. [3 ]
Usach, Vanina [1 ,2 ]
Muraca, Diego [4 ]
Cueto, Alicia [5 ]
Roig, Anna [6 ]
Raap, Marcela B. Fernandez van [3 ]
Setton-Avruj, Clara P. [1 ,2 ]
机构
[1] Univ Buenos Aires, Dept Quim Biol, Catedra Quim Biol Patol, Fac Farm & Bioquim, Junin 956, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires Buenos Aires, Inst Quim & Fis Quim Biol IQUIFIB, CONICET, Junin 956, Buenos Aires, DF, Argentina
[3] Univ Nacl La Plata UNLP, Inst Fis La Plata IFLP CONICET, Dept Fis, Fac Ciencias Exactas, Cc 67, RA-1900 La Plata, Argentina
[4] Univ Estadual Campinas, Inst Fis Gleb Wataghin, R Sergio Buarque de Holanda 777, BR-13083859 Campinas, Brazil
[5] Hosp Espanol, Serv Neurol, Ave Belgrano 2975 C1209, Buenos Aires, DF, Argentina
[6] ICMAB CSIC, Inst Ciencia Mat Barcelona, Bellaterra 08193, Catalonia, Spain
关键词
Nanomedicine; Stem cells; Magnetic targeting; Sciatic nerve; Remyelination; IRON-OXIDE NANOPARTICLES; SPINAL-CORD-INJURY; BONE-MARROW; DRUG-DELIVERY; SCHWANN-CELLS; TISSUE; RAT; TRANSPLANTATION; BRAIN; REPAIR;
D O I
10.1016/j.actbio.2021.05.050
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Traumatic peripheral nerve injuries constitute a huge concern to public health. Nerve damage leads to a decrease or even loss of mobility of the innervated area. Adult stem cell therapies have shown some encouraging results and have been identified as promising treatment candidates for nerve regeneration. A major obstacle to that approach is securing a sufficient number of cells at the injured site to produce measurable therapeutic effects. The present work tackles this issue and demonstrates enhanced nerve re-generation ability promoted by magnetic targeted cell therapy in an in vivo Wallerian degeneration model. To this end, adipose-derived mesenchymal stem cells (AdMSC) were loaded with citric acid coated super-paramagnetic iron oxide nanoparticles (SPIONs), systemically transplanted and magnetically recruited to the injured sciatic nerve. AdMSC arrival to the injured nerve was significantly increased using magnetic targeting and their beneficial effects surpassed the regenerative properties of the stand-alone cell therapy. AdMSC-SPIONs group showed a partially conserved nerve structure with many intact myelinated axons. Also, a very remarkable restoration in myelin basic protein organization, indicative of remyelination, was observed. This resulted in an improvement in nerve conduction, demonstrating functional recovery. In summary, our results demonstrate that magnetically assisted delivery of AdMSC, using a non-invasive and non-traumatic method, is a highly promising strategy to promote cell recruitment and sciatic nerve regeneration after traumatic injury. Last but not least, our results validate magnetic targeting in vivo ex-ceeding previous reports in less complex models through cell magnetic targeting in vitro and ex vivo. Statement of significance Traumatic peripheral nerve injuries constitute a huge public health concern. They can lead to a decrease or even loss of mobility of innervated areas. Due to their complex pathophysiology, current pharmaco-logical and surgical approaches are only partially effective. Cell-based therapies have emerged as a useful tool to achieve full tissue regeneration. However, a major bottleneck is securing enough cells at injured sites. Therefore, our proposal combining biological (adipose derived mesenchymal stem cells) and nan-otechnological strategies (magnetic targeting) is of great relevance, reporting the first in vivo experiments involving "magnetic stem cell" targeting for peripheral nerve regeneration. Using a non-invasive and non traumatic method, cell recruitment in the injured nerve was improved, fostering nerve remyelination and functional recovery. (c) 2021 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
引用
收藏
页码:234 / 247
页数:14
相关论文
共 64 条
[11]   Nanoclusters of crystallographically aligned nanoparticles for magnetic thermotherapy: aqueous ferrofluid, agarose phantoms and ex vivo melanoma tumour assessment [J].
Coral, D. F. ;
Soto, P. A. ;
Blank, V. ;
Veiga, A. ;
Spinelli, E. ;
Gonzalez, S. ;
Saracco, G. P. ;
Bab, M. A. ;
Muraca, D. ;
Setton-Avruj, P. C. ;
Roig, A. ;
Roguin, L. ;
Fernandez van Raap, M. B. .
NANOSCALE, 2018, 10 (45) :21262-21274
[12]   Stress-Induced Gene Expression Sensing Intracellular Heating Triggered by Magnetic Hyperthermia [J].
Elisa de Sousa, M. ;
Carrea, Alejandra ;
Mendoza Zelis, Pedro ;
Muraca, Diego ;
Mykhaylyk, Olga ;
Sosa, Yolanda E. ;
Goya, Rodolfo G. ;
Sanchez, Francisco H. ;
Dewey, Ricardo A. ;
Fernandez van Raap, Marcela B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (13) :7339-7348
[13]   Stability and Relaxation Mechanisms of Citric Acid Coated Magnetite Nanoparticles for Magnetic Hyperthermia [J].
Elisa de Sousa, M. ;
Fernandez van Raap, Marcela B. ;
Rivas, Patricia C. ;
Mendoza Zelis, Pedro ;
Girardin, Pablo ;
Pasquevich, Gustavo A. ;
Alessandrini, Jose L. ;
Muraca, Diego ;
Sanchez, Francisco H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (10) :5436-5445
[14]   Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration [J].
Fernandes, Marcela ;
Valente, Sandra Gomes ;
Sabongi, Rodrigo Guerra ;
Gomes dos Santos, Joao Baptista ;
Leite, Vilnei Mattioli ;
Ulrich, Henning ;
Nery, Arthur Andrade ;
da Silva Fernandes, Maria Jose .
NEURAL REGENERATION RESEARCH, 2018, 13 (01) :100-104
[15]   Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study [J].
Fernandez, Oscar ;
Izquierdo, Guillermo ;
Fernandez, Victoria ;
Leyva, Laura ;
Reyes, Virginia ;
Guerrero, Miguel ;
Leon, Antonio ;
Arnaiz, Carlos ;
Navarro, Guillermo ;
Dolores Paramo, Maria ;
De la Cuesta, Antonio ;
Soria, Bernet ;
Hmadcha, Abdelkrim ;
Pozo, David ;
Fernandez-Montesinos, Rafael ;
Leal, Maria ;
Ochotorena, Itziar ;
Galvez, Patricia ;
Angeles Geniz, Maria ;
Javier Baron, Francisco ;
Mata, Rosario ;
Medina, Cristina ;
Caparros-Escudero, Carlos ;
Cardesa, Ana ;
Cuende, Natividad .
PLOS ONE, 2018, 13 (05)
[16]  
Gao S., DIFFERENTIATION HUMA, DOI [10.1038/s41419-019-1772-1, DOI 10.1038/S41419-019-1772-1]
[17]   Differentiation of Mesenchymal Stem Cells to Neuroglia: in the Context of Cell Signalling [J].
George, Sajan ;
Hamblin, Michael R. ;
Abrahamse, Heidi .
STEM CELL REVIEWS AND REPORTS, 2019, 15 (06) :814-826
[18]   Magnetic Nanoparticles for Efficient Delivery of Growth Factors: Stimulation of Peripheral Nerve Regeneration [J].
Giannaccini, Martina ;
Calatayud, M. Pilar ;
Poggetti, Andrea ;
Corbianco, Silvia ;
Novelli, Michela ;
Paoli, Melania ;
Battistini, Pietro ;
Castagna, Maura ;
Dente, Luciana ;
Parchi, Paolo ;
Lisanti, Michele ;
Cavallini, Gabriella ;
Junquera, Concepcion ;
Goya, Gerardo F. ;
Raffa, Vittoria .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (07)
[19]   The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction [J].
Hoshyar, Nazanin ;
Gray, Samantha ;
Han, Hongbin ;
Bao, Gang .
NANOMEDICINE, 2016, 11 (06) :673-692
[20]   Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: A human trial [J].
Hur, Junseok W. ;
Cho, Tai-Hyoung ;
Park, Dong-Hyuk ;
Lee, Jang-Bo ;
Park, Jung-Yul ;
Chung, Yong-Gu .
JOURNAL OF SPINAL CORD MEDICINE, 2016, 39 (06) :655-664