The limits of cosmic shear

被引:68
作者
Kitching, Thomas D. [1 ]
Alsing, Justin [2 ,3 ]
Heavens, Alan F. [2 ]
Jimenez, Raul [4 ,5 ]
McEwen, Jason D. [1 ]
Verde, Licia [4 ,5 ]
机构
[1] Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England
[2] Imperial Coll, Blackett Lab, ICIC, Astrophys, Prince Consort Rd, London SW7 2AZ, England
[3] Ctr Computat Astrophys, 160 5th Ave, New York, NY 10010 USA
[4] Univ Barcelona, ICC, IEEC UB, Marti Franques 1, E-08028 Barcelona, Spain
[5] ICREA, Pg Lluis Companys 23, E-08010 Barcelona, Spain
基金
英国工程与自然科学研究理事会;
关键词
large-scale structure of Universe; cosmology: theory; COSMOLOGICAL PARAMETER CONSTRAINTS; POWER SPECTRUM; DARK ENERGY; INTRINSIC ALIGNMENTS; WEAK; CFHTLENS; IMPACT; MODES;
D O I
10.1093/mnras/stx1039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we discuss the commonly used limiting cases, or approximations, for two-point cosmic-shear statistics. We discuss the most prominent assumptions in this statistic: the flat-sky (small angle limit), the Limber (Bessel-to-delta function limit) and the Hankel transform (large l-mode limit) approximations; that the vast majority of cosmic-shear results to date have used simultaneously. We find that the combined effect of these approximations can suppress power by greater than or similar to 1 per cent on scales of l less than or similar to 40. A fully non-approximated cosmic-shear study should use a spherical-sky, non-Limber-approximated power spectrum analysis and a transform involving Wigner small-d matrices in place of the Hankel transform. These effects, unaccounted for, would constitute at least 11 per cent of the total budget for systematic effects for a power spectrum analysis of a Euclid-like experiment; but they are unnecessary.
引用
收藏
页码:2737 / 2749
页数:13
相关论文
共 54 条
[1]   Planck 2015 results XV. Gravitational lensing [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Bartolo, N. ;
Basak, S. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chiang, H. C. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. ;
de Rosa, A. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]  
Albrecht A., 2006, Fermilab Report No. FERMILAB-FN-0793-A
[3]   Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference [J].
Alsing, Justin ;
Heavens, Alan ;
Jaffe, Andrew H. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 466 (03) :3272-3292
[4]   Hierarchical cosmic shear power spectrum inference [J].
Alsing, Justin ;
Heavens, Alan ;
Jaffe, Andrew H. ;
Kiessling, Alina ;
Wandelt, Benjamin ;
Hoffmann, Till .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (04) :4452-4466
[5]   Systematic bias in cosmic shear: Extending the Fisher matrix [J].
Amara, Adam ;
Réfrégier, Alexandre .
Monthly Notices of the Royal Astronomical Society, 2008, 391 (01) :228-236
[6]  
Bernardeau F, 1998, ASTRON ASTROPHYS, V338, P375
[7]   Cosmic shear bispectrum from second-order perturbations in general relativity [J].
Bernardeau, Francis ;
Bonvin, Camille ;
Van de Rijt, Nicolas ;
Vernizzi, Filippo .
PHYSICAL REVIEW D, 2012, 86 (02)
[8]  
Bridle S, 2007, NEW J PHYS, V9, DOI 10.1088/1367-2630/9/12/444
[9]   The shear power spectrum from the COMBO-17 survey [J].
Brown, ML ;
Taylor, AN ;
Bacon, DJ ;
Gray, ME ;
Dye, S ;
Meisenheimer, K ;
Wolf, C .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 341 (01) :100-118
[10]   Weak lensing analysis in three dimensions [J].
Castro, PG ;
Heavens, AF ;
Kitching, TD .
PHYSICAL REVIEW D, 2005, 72 (02) :1-18