共 29 条
Heterogeneity influences on stream water-groundwater interactions in a gravel-dominated floodplain
被引:12
|作者:
Miller, R. B.
[1
]
Heeren, D. M.
[2
]
Fox, G. A.
[1
]
Halihan, T.
[3
]
Storm, D. E.
[1
]
机构:
[1] Oklahoma State Univ, Biosyst & Agr Engn, Stillwater, OK 74078 USA
[2] Univ Nebraska, Biol Syst Engn, Lincoln, NE USA
[3] Oklahoma State Univ, Pickens Sch Geol, Stillwater, OK 74078 USA
来源:
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES
|
2016年
/
61卷
/
04期
关键词:
alluvial floodplain;
surface water-groundwater interaction;
hydraulic conductivity;
interpolations;
streamflow;
water table response;
DISSOLVED ORGANIC-CARBON;
ELECTRICAL-RESISTIVITY;
ALLUVIAL FLOODPLAINS;
HYDRAULIC CONDUCTIVITY;
HYPORHEIC ZONE;
SOUTH-AUSTRALIA;
FLOW PATHS;
SUBSURFACE;
TRANSPORT;
AQUIFERS;
D O I:
10.1080/02626667.2014.992790
中图分类号:
TV21 [水资源调查与水利规划];
学科分类号:
081501 ;
摘要:
Floodplains are composed of complex depositional patterns of ancient and recent stream sediments, and research is needed to address the manner in which coarse floodplain materials affect stream-groundwater exchange patterns. Efforts to understand the heterogeneity of aquifers have utilized numerous techniques typically focused on point-scale measurements; however, in highly heterogeneous settings, the ability to model heterogeneity is dependent on the data density and spatial distribution. The objective of this research was to investigate the correlation between broad-scale methodologies for detecting heterogeneity and the observed spatial variability in stream/groundwater interactions of gravel-dominated alluvial floodplains. More specifically, this study examined the correlation between electrical resistivity (ER) and alluvial groundwater patterns during a flood event at a site on Barren Fork Creek, in the Ozark ecoregion of Oklahoma, USA, where chert gravels were common both as streambed and as floodplain material. Water table elevations from groundwater monitoring wells for a flood event on 1-5 May 2009 were compared to ER maps at various elevations. Areas with high ER matched areas with lower water table slope at the same elevation. This research demonstrated that ER approaches were capable of indicating heterogeneity in surface water-groundwater interactions, and that these heterogeneities were present even in an aquifer matrix characterized as highly conductive. Portions of gravel-dominated floodplain vadose zones characterized by high hydraulic conductivity features can result in heterogeneous flow patterns when the vadose zone of alluvial floodplains activates during storm events.
引用
收藏
页码:741 / 750
页数:10
相关论文