An Improved Multi-swarm Particle Swarm Optimization Based on Knowledge Billboard and Periodic Search Mechanism

被引:1
|
作者
Du, Pan-pan [1 ]
Han, Fei [1 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang, Jiangsu, Peoples R China
来源
INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT I | 2017年 / 10361卷
基金
中国国家自然科学基金;
关键词
Particle swarm optimization; Multi-swarm; Periodic shared; Improved K-means; Knowledge billboard;
D O I
10.1007/978-3-319-63309-1_59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-swarm particle swarm optimization has faster convergence rate, wider range of search, and higher convergence accuracy. However, the information among sub-swarms is not updated in time, which may decrease the search ability of the multiple swarms. An improved multi-swarm particle swarm optimization based on the periodic search mechanisms and the knowledge billboard (KBMPSO) is proposed. The swarm is divided into several sub-swarms using the improved K-means method. In a search cycle, one sub-swarm searches collaboratively and the remaining sub-swarms search independently. When the particles evolve independently to a certain generation, the global best value is periodically updated. The information stored in the knowledge billboard can help the sub-swarm jump out the local optimum. The KBMPSO algorithm will exchange the information between the adjacent sub-swarms every fixed number of generations. Once the sub-swarm is trapped into the local optimum during the search process, it will affect the convergence effect of its adjacent sub-swarm. Introducing the knowledge billboard to the sub-swarm during its searching avoids the sub-swarm trapping into the local optimum. To effectively keep the balance between the global exploration and the exploitation, the particle takes advantage of the shared information which stored on the knowledge billboard. In the simulation studies, several benchmark functions are conducted to verify the superiority of the KBMPSO algorithm.
引用
收藏
页码:668 / 678
页数:11
相关论文
共 50 条
  • [1] Multi-swarm Particle Swarm Optimization Based on Mixed Search Behavior
    Jie, Jing
    Wang, Wanliang
    Liu, Chunsheng
    Hou, Beiping
    ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 2, 2010, : 32 - +
  • [2] Multi-swarm particle swarm optimization based on autonomic learning and elite swarm
    Jiang, Hai-Yan
    Wang, Fang-Fang
    Guo, Xiao-Qing
    Zhuang, Jia-Xiang
    Kongzhi yu Juece/Control and Decision, 2014, 29 (11): : 2034 - 2040
  • [3] A Multi-Swarm Cooperative Perturbed Particle Swarm Optimization
    Yang, Xiangjun
    Zhao, Yilong
    Chen, Yuchuang
    Zhao, Xinchao
    ADVANCED RESEARCH ON AUTOMATION, COMMUNICATION, ARCHITECTONICS AND MATERIALS, PTS 1 AND 2, 2011, 225-226 (1-2): : 619 - 622
  • [4] Multi-swarm Optimization Algorithm Based on Firefly and Particle Swarm Optimization Techniques
    Kadavy, Tomas
    Pluhacek, Michal
    Viktorin, Adam
    Senkerik, Roman
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 405 - 416
  • [5] Research on Target Localization based on Improved Multi-swarm Particle Swarm Optimization Algorithm
    Yao, Jinjie
    Han, Yan
    2010 6TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS NETWORKING AND MOBILE COMPUTING (WICOM), 2010,
  • [6] Reconfiguration of Distribution Network Based on Improved Dynamic Multi-Swarm Particle Swarm Optimization
    Li Han
    Zhang Xuexia
    Guo Zhiqi
    Wang Xindi
    Ye Shengyong
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 9952 - 9956
  • [7] A Dynamic Multi-Swarm Particle Swarm Optimization With Global Detection Mechanism
    Wei B.
    Tang Y.
    Jin X.
    Jiang M.
    Ding Z.
    Huang Y.
    International Journal of Cognitive Informatics and Natural Intelligence, 2021, 15 (04)
  • [8] A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization
    Yazdani, Danial
    Nasiri, Babak
    Sepas-Moghaddam, Alireza
    Meybodi, Mohammad Reza
    APPLIED SOFT COMPUTING, 2013, 13 (04) : 2144 - 2158
  • [9] Dynamic Multi-swarm Global Particle Swarm Optimization
    Tang, Yichao
    Li, Xiong
    Zhang, Yinglong
    Xia, Xuewen
    Gui, Ling
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1030 - 1037
  • [10] Multi-swarm particle swarm optimization based on CUDA for sparse reconstruction
    Han, Wencheng
    Li, Hao
    Gong, Maoguo
    Li, Jianzhao
    Liu, Yiting
    Wang, Zhenkun
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75