Sparse Locally Linear Embedding

被引:10
作者
Ziegelmeier, Lori [1 ]
Kirby, Michael [2 ]
Peterson, Chris [2 ]
机构
[1] Macalaster Coll, St Paul, MN 55105 USA
[2] Colorado State Univ, Ft Collins, CO 80523 USA
来源
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017) | 2017年 / 108卷
基金
美国国家科学基金会;
关键词
Locally Linear Embedding; Dimensionality Reduction; Manifold Learning; Optimization; Regularization; Sparsity; NEIGHBORS; NUMBER;
D O I
10.1016/j.procs.2017.05.171
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Locally Linear Embedding (LLE) algorithm has proven useful for determining structure preserving, dimension reducing mappings of data on manifolds. We propose a modification to the LLE optimization problem that serves to minimize the number of neighbors required for the representation of each data point. The algorithm is shown to be robust over wide ranges of the sparsity parameter producing an average number of nearest neighbors that is consistent with the best performing parameter selection for LLE. Given the number of non-zero weights may be substantially reduced in comparison to LLE, Sparse LLE can be applied to larger data sets. We provide three numerical examples including a color image, the standard swiss roll, and a gene expression data set to illustrate the behavior of the method in comparison to LLE. The resulting algorithm produces comparatively sparse representations that preserve the neighborhood geometry of the data in the spirit of LLE. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:635 / 644
页数:10
相关论文
共 10 条
[1]   Global and local choice of the number of nearest neighbors in locally linear embedding [J].
Alvarez-Meza, Andres ;
Valencia-Aguirre, Juliana ;
Daza-Santacoloma, Genaro ;
Castellanos-Dominguez, German .
PATTERN RECOGNITION LETTERS, 2011, 32 (16) :2171-2177
[2]  
Boyd S, 2004, CONVEX OPTIMIZATION
[3]  
Bradley P. S., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P82
[4]  
Elhamifar E., 2011, Advances in neural information processing systems, P55, DOI DOI 10.1109/TPAMI.2013.57
[5]  
Karbauskaite R, 2007, INF TECHNOL CONTROL, V36, P359
[6]  
Kouropteva O., 2002, P 1 INT C FUZZ SYST, P359, DOI DOI 10.1007/11499145_53
[7]   Think globally, fit locally: Unsupervised learning of low dimensional manifolds [J].
Saul, LK ;
Roweis, ST .
JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (02) :119-155
[9]   Gene Expression Signatures Diagnose Influenza and Other Symptomatic Respiratory Viral Infections in Humans [J].
Zaas, Aimee K. ;
Chen, Minhua ;
Varkey, Jay ;
Veldman, Timothy ;
Hero, Alfred O., III ;
Lucas, Joseph ;
Huang, Yongsheng ;
Tumer, Ronald ;
Gilbert, Anthony ;
Lambkin-Williams, Robert ;
Oien, N. Christine ;
Nicholson, Bradly ;
Kingsmore, Stephen ;
Carin, Lawrence ;
Woods, Christopher W. ;
Ginsburg, Geoffrey S. .
CELL HOST & MICROBE, 2009, 6 (03) :207-217
[10]  
Ziegelmeier Lori Beth, 2013, THESIS