Observation of two independent skyrmion phases in a chiral magnetic material

被引:138
作者
Chacon, A. [1 ]
Heinen, L. [2 ]
Halder, M. [1 ]
Bauer, A. [1 ]
Simeth, W. [1 ]
Muehlbauer, S. [3 ]
Berger, H. [4 ]
Garst, M. [5 ]
Rosch, A. [2 ]
Pfleiderer, C. [1 ]
机构
[1] Tech Univ Munich, Phys Dept, Garching, Germany
[2] Univ Cologne, Inst Theoret Phys, Cologne, Germany
[3] Tech Univ Munich, Heinz Maier Leibnitz Zentrum MLZ, Garching, Germany
[4] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[5] Tech Univ Dresden, Inst Theoret Phys, Dresden, Germany
关键词
ROOM-TEMPERATURE; LATTICE; TRANSITION; MONOPOLES;
D O I
10.1038/s41567-018-0184-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetic materials can host skyrmions, which are topologically non-trivial spin textures. In chiral magnets with cubic lattice symmetry, all previously observed skyrmion phases require thermal fluctuations to become thermodynamically stable in bulk materials, and therefore exist only at relatively high temperature, close to the helimagnetic transition temperature. Other stabilization mechanisms require a lowering of the cubic crystal symmetry. Here, we report the identification of a second skyrmion phase in Cu2OSeO3 at low temperature and in the presence of an applied magnetic field. The new skyrmion phase is thermodynamically disconnected from the well-known, nearly isotropic, high-temperature phase, and exists, in contrast, when the external magnetic field is oriented along the < 100 > crystal axis only. Theoretical modelling provides evidence that the stabilization mechanism is given by well-known cubic anisotropy terms, and accounts for an additional observation of metastable helices tilted away from the applied field. The identification of two distinct skyrmion phases in the same material and the generic character of the underlying mechanism suggest a new avenue for the discovery, design and manipulation of topological spin textures.
引用
收藏
页码:936 / +
页数:7
相关论文
共 31 条
[1]   Skyrmions in a ferromagnetic Bose-Einstein condensate [J].
Al Khawaja, U ;
Stoof, H .
NATURE, 2001, 411 (6840) :918-920
[2]  
[Anonymous], 2016, GENERIC ASPECTS SKYR, DOI DOI 10.1007/978-3-319-25301-5_1
[3]  
[Anonymous], 2010, The Multifaceted Skyrmion
[4]   Magnetoelectric effects in single crystals of the cubic ferrimagnetic helimagnet Cu2OSeO3 [J].
Belesi, M. ;
Rousochatzakis, I. ;
Abid, M. ;
Roessler, U. K. ;
Berger, H. ;
Ansermet, J. -Ph. .
PHYSICAL REVIEW B, 2012, 85 (22)
[5]  
BOGDANOV AN, 1989, ZH EKSP TEOR FIZ+, V95, P178
[6]   Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet [J].
Bordacs, S. ;
Butykai, A. ;
Szigeti, B. G. ;
White, J. S. ;
Cubitt, R. ;
Leonov, A. O. ;
Widmann, S. ;
Ehlers, D. ;
von Nidda, H. -A. Krug ;
Tsurkan, V. ;
Loidl, A. ;
Kezsmarki, I. .
SCIENTIFIC REPORTS, 2017, 7
[7]   Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations [J].
Buhrandt, Stefan ;
Fritz, Lars .
PHYSICAL REVIEW B, 2013, 88 (19)
[8]   Uniaxial Pressure Dependence of Magnetic Order in MnSi [J].
Chacon, A. ;
Bauer, A. ;
Adams, T. ;
Rucker, F. ;
Brandl, G. ;
Georgii, R. ;
Garst, M. ;
Pfleiderer, C. .
PHYSICAL REVIEW LETTERS, 2015, 115 (26)
[9]   From spiral to ferromagnetic structure in B20 compounds: Role of cubic anisotropy [J].
Grigoriev, S. V. ;
Sukhanov, A. S. ;
Maleyev, S. V. .
PHYSICAL REVIEW B, 2015, 91 (22)
[10]   Critical phenomena of emergent magnetic monopoles in a chiral magnet [J].
Kanazawa, N. ;
Nii, Y. ;
Zhang, X. -X. ;
Mishchenko, A. S. ;
De Filippis, G. ;
Kagawa, F. ;
Iwasa, Y. ;
Nagaosa, N. ;
Tokura, Y. .
NATURE COMMUNICATIONS, 2016, 7