Global Well-Posedness of 3d Axisymmetric MHD-Boussinesq System with Nonzero Swirl

被引:1
|
作者
Liu, Qiao [1 ]
Yang, Yixin [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
[2] Hunan Normal Univ, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
MHD-Boussinesq system; Axisymmetric; Global solutions; Regularity criteria; NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS; REGULARITY CRITERION; INTERIOR REGULARITY;
D O I
10.1007/s00021-022-00704-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the 3d axisymmetric MHD-Boussinesq system with nonzero swirl, and prove that the system, with initial data (u(0), h(0), rho(0)) = (u(0)(r)e(r) + u(0)(theta)e(theta) + u(0)(z)e(z), h(0)(theta)e(theta), rho(0)) which satisfies some small nonlinear condition, admits a global unique solution (u, h, rho) . Furthermore, some continuation criteria that imply regularity of axisymmetric solutions are also obtained.
引用
收藏
页数:22
相关论文
共 50 条