Development of Artificial Intelligence for Parathyroid Recognition During Endoscopic Thyroid Surgery

被引:24
作者
Wang, Bo [1 ,2 ]
Zheng, Jing [1 ,3 ]
Yu, Jia-Fan [1 ]
Lin, Si-Ying [1 ]
Yan, Shou-Yi [1 ]
Zhang, Li-Yong [1 ]
Wang, Si-Si [1 ]
Cai, Shao-Jun [1 ]
Ahmed, Amr H. Abdelhamid [2 ]
Lin, Lan-Qin [4 ]
Chen, Fei [5 ]
Randolph, Gregory W. [2 ,6 ]
Zhao, Wen-Xin [1 ]
机构
[1] Fujian Med Univ Union Hosp, Dept Thyroid Surg, Fuzhou, Fujian, Peoples R China
[2] Harvard Med Sch, Massachusetts Eye & Ear Infirm, Div Thyroid & Parathyroid Endocrine Surg, Dept Otolaryngol Head & Neck Surg, Boston, MA 02115 USA
[3] Fujian Med Univ, Zhangzhou Affiliated Hosp, Dept Thyroid Surg, Fuzhou, Fujian, Peoples R China
[4] Fujian Med Univ Union Hosp, Dept Operat, Fuzhou, Fujian, Peoples R China
[5] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou, Fujian, Peoples R China
[6] Harvard Med Sch, Massachusetts Gen Hosp, Boston, MA 02115 USA
关键词
artificial intelligence; deep learning; endoscopy; parathyroid; thyroidectomy; CENTRAL NECK DISSECTION; INADVERTENT PARATHYROIDECTOMY; INCIDENTAL PARATHYROIDECTOMY; RISK-FACTORS; HYPOPARATHYROIDISM;
D O I
10.1002/lary.30173
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Objective We aimed to establish an artificial intelligence (AI) model to identify parathyroid glands during endoscopic approaches and compare it with senior and junior surgeons' visual estimation. Methods A total of 1,700 images of parathyroid glands from 166 endoscopic thyroidectomy videos were labeled. Data from 20 additional full-length videos were used as an independent external cohort. The YOLO V3, Faster R-CNN, and Cascade algorithms were used for deep learning, and the optimal algorithm was selected for independent external cohort analysis. Finally, the identification rate, initial recognition time, and tracking periods of PTAIR (Artificial Intelligence model for Parathyroid gland Recognition), junior surgeons, and senior surgeons were compared. Results The Faster R-CNN algorithm showed the best balance after optimizing the hyperparameters of each algorithm and was updated as PTAIR. The precision, recall rate, and F1 score of the PTAIR were 88.7%, 92.3%, and 90.5%, respectively. In the independent external cohort, the parathyroid identification rates of PTAIR, senior surgeons, and junior surgeons were 96.9%, 87.5%, and 71.9%, respectively. In addition, PTAIR recognized parathyroid glands 3.83 s ahead of the senior surgeons (p = 0.008), with a tracking period 62.82 s longer than the senior surgeons (p = 0.006). Conclusions PTAIR can achieve earlier identification and full-time tracing under a particular training strategy. The identification rate of PTAIR is higher than that of junior surgeons and similar to that of senior surgeons. Such systems may have utility in improving surgical outcomes and also in accelerating the education of junior surgeons. Level of Evidence 3 Laryngoscope, 2022
引用
收藏
页码:2516 / 2523
页数:8
相关论文
共 30 条
[1]   Incidence, Risk Factors, and Clinical Outcomes of Incidental Parathyroidectomy During Thyroid Surgery [J].
Applewhite, Megan K. ;
White, Michael G. ;
Xiong, Maggie ;
Pasternak, Jesse D. ;
Abdulrasool, Layth ;
Ogawa, Lauren ;
Suh, Insoo ;
Gosnell, Jessica E. ;
Kaplan, Edwin L. ;
Duh, Quan-Yang ;
Angelos, Peter ;
Shen, Wen T. ;
Grogan, Raymon H. .
ANNALS OF SURGICAL ONCOLOGY, 2016, 23 (13) :4310-4315
[2]   Parathyroid autotransplantation in extensive head and neck resections: case series report [J].
Athanasopoulos, Panagiotis G. ;
Kyriazi, Maria ;
Arkadopoulos, Nikolaos ;
Dellaportas, Dionysios ;
Manta, Asimina ;
Theodosopoulos, Theodosios ;
Tympa, Aliki ;
Vassileiou, Ioannis ;
Smyrniotis, Vassilios .
WORLD JOURNAL OF SURGICAL ONCOLOGY, 2011, 9
[3]   Association of Autofluorescence-Based Detection of the Parathyroid Glands During Total Thyroidectomy With Postoperative Hypocalcemia Risk Results of the PARAFLUO Multicenter Randomized Clinical Trial [J].
Benmiloud, Fares ;
Godiris-Petit, Gaelle ;
Gras, Regis ;
Gillot, Jean-Charles ;
Turrin, Nicolas ;
Penaranda, Guillaume ;
Noullet, Severine ;
Chereau, Nathalie ;
Gaudart, Jean ;
Chiche, Laurent ;
Rebaudet, Stanislas .
JAMA SURGERY, 2020, 155 (02) :106-112
[4]   Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology [J].
Bera, Kaustav ;
Schalper, Kurt A. ;
Rimm, David L. ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) :703-715
[5]   American Thyroid Association Statement on Remote-Access Thyroid Surgery [J].
Berber, Eren ;
Bernet, Victor ;
Fahey, Thomas J., III ;
Kebebew, Electron ;
Shaha, Ashok ;
Stack, Brendan C., Jr. ;
Stang, Michael ;
Steward, David L. ;
Terris, David J. .
THYROID, 2016, 26 (03) :331-337
[6]   Management Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists [J].
Buda, Mateusz ;
Wildman-Tobriner, Benjamin ;
Hoang, Jenny K. ;
Thayer, David ;
Tessler, Franklin N. ;
Middleton, William D. ;
Mazurowski, Maciej A. .
RADIOLOGY, 2019, 292 (03) :695-701
[7]   Cosmetic outcomes following transoral versus transcervical thyroidectomy [J].
Chen, Lena W. ;
Razavi, Christopher R. ;
Hong, Hanna ;
Fondong, Akeweh ;
Ranganath, Rohit ;
Khatri, Surya ;
Mydlarz, Wojciech K. ;
Mathur, Aarti ;
Ishii, Masaru ;
Nellis, Jason ;
Shaear, Mohammad ;
Tufano, Ralph P. ;
Russell, Jonathon O. .
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2020, 42 (11) :3336-3344
[8]   Deep Learning-based Image Conversion of CT Reconstruction Kernels Improves Radiomics Reproducibility for Pulmonary Nodules or Masses [J].
Choe, Jooae ;
Lee, Sang Min ;
Do, Kyung-Hymn ;
Lee, Gaeun ;
Lee, June-Goo ;
Seo, Joon Beom .
RADIOLOGY, 2019, 292 (02) :365-373
[9]   Endoscopic thyroidectomy via bilateral axillo-breast approach (BABA): review of 512 cases in a single institute [J].
Choi, June Young ;
Lee, Kyu Eun ;
Chung, Ki-Wook ;
Kim, Seok-Won ;
Choe, Jun-Ho ;
Koo, Do Hoon ;
Kim, Su-Jin ;
Lee, Jeonghun ;
Chung, Yoo Seung ;
Oh, Seung Keun ;
Youn, Yeo-Kyu .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2012, 26 (04) :948-955
[10]   Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks [J].
Hollon, Todd C. ;
Pandian, Balaji ;
Adapa, Arjun R. ;
Urias, Esteban ;
Save, Akshay V. ;
Khalsa, Siri Sahib S. ;
Eichberg, Daniel G. ;
D'Amico, Randy S. ;
Farooq, Zia U. ;
Lewis, Spencer ;
Petridis, Petros D. ;
Marie, Tamara ;
Shah, Ashish H. ;
Garton, Hugh J. L. ;
Maher, Cormac O. ;
Heth, Jason A. ;
McKean, Erin L. ;
Sullivan, Stephen E. ;
Hervey-Jumper, Shawn L. ;
Patil, Parag G. ;
Thompson, B. Gregory ;
Sagher, Oren ;
McKhann, Guy M. ;
Komotar, Ricardo J. ;
Ivan, Michael E. ;
Snuderl, Matija ;
Otten, Marc L. ;
Johnson, Timothy D. ;
Sisti, Michael B. ;
Bruce, Jeffrey N. ;
Muraszko, Karin M. ;
Trautman, Jay ;
Freudiger, Christian W. ;
Canoll, Peter ;
Lee, Honglak ;
Camelo-Piragua, Sandra ;
Orringer, Daniel A. .
NATURE MEDICINE, 2020, 26 (01) :52-+