Multi-party quantum secret sharing based on logical GHZ-type states against collective noise

被引:0
作者
Xiang, Yi [1 ,2 ,3 ]
Tang, Liang [2 ,3 ]
Bai, Ming-Qiang [2 ,3 ]
Mo, Zhi-Wen [2 ,3 ]
机构
[1] Sichuan Univ Sci & Engn, Coll Math & Stat, Zigong 643000, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Peoples R China
[3] Sichuan Normal Univ, Inst Intelligent Informat & Quantum Informat, Chengdu 610066, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2021年 / 35卷 / 25期
基金
中国国家自然科学基金;
关键词
Quantum secret sharing; logical GHZ-type state; collective noise; projective measurement; SECURE DIRECT COMMUNICATION; KEY AGREEMENT; EFFICIENT; PROTOCOL;
D O I
10.1142/S0217984921504364
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we discussed the local preparation methods of two types of multi-qubit logical GHZ-type states using controlled quantum gates, and drew the corresponding quantum circuits. Subsequently, we investigated the measurement-related properties of logical GHZ-type state and thus proposed two multi-party quantum secret sharing schemes against collective-dephasing and collective-rotation noise, respectively. Further, we demonstrated that the schemes can effectively resist some familiar attack strategies. Finally, we analyzed the quantum efficiency of our schemes and made a comprehensive comparison with previous similar schemes.
引用
收藏
页数:17
相关论文
共 31 条
  • [1] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [2] Generalized privacy amplification
    Bennett, CH
    Brassard, G
    Crepeau, C
    Maurer, UM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 1915 - 1923
  • [3] Blakley G R., 1979, INT WORKSH MAN REQ K, P313, DOI [10.1109/MARK.1979.8817296, 10.1109/AFIPS.1979.98, DOI 10.1109/MARK.1979.8817296]
  • [4] Experimental quantum teleportation
    Bouwmeester, D
    Pan, JW
    Mattle, K
    Eibl, M
    Weinfurter, H
    Zeilinger, A
    [J]. NATURE, 1997, 390 (6660) : 575 - 579
  • [5] Quantum key distribution with classical Bob
    Boyer, Michel
    Kenigsberg, Dan
    Mor, Tal
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (14)
  • [6] Quantum key distribution in the Holevo limit
    Cabello, A
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (26) : 5635 - 5638
  • [7] How to share a quantum secret
    Cleve, R
    Gottesman, D
    Lo, HK
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (03) : 648 - 651
  • [8] Improving the security of multiparty quantum secret sharing against Trojan horse attack
    Deng, FG
    Li, XH
    Zhou, HY
    Zhang, ZJ
    [J]. PHYSICAL REVIEW A, 2005, 72 (04):
  • [9] Quantum privacy amplification and the security of quantum cryptography over noisy channels
    Deutsch, D
    Ekert, A
    Jozsa, R
    Macchiavello, C
    Popescu, S
    Sanpera, A
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (13) : 2818 - 2821
  • [10] Security of quantum key distribution with entangled qutrits
    Durt, T
    Cerf, NJ
    Gisin, N
    Zukowski, M
    [J]. PHYSICAL REVIEW A, 2003, 67 (01):