Asymptotics of laurent polynomials of odd degree orthogonal with respect to varying exponential weights

被引:7
作者
McLaughlin, K. T. -R.
Vartanian, A. H.
Zhou, X.
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Coll Charleston, Dept Math, Charleston, SC 29424 USA
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词
asymptotics; equilibrium measures; Hankel determinants; Laurent polynomials; Laurent-Jacobi matrices; Riemann-Hilbert problems;
D O I
10.1007/s00365-007-0675-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Lambda R denote the linear space over R spanned by z(k), k is an element of Z. Define the ( real) inner product <center dot , center dot > L : Lambda(R) x Lambda(R) -> R, ( f, g) -> integral(R) f (s)g(s) exp(-NV(s)) ds, N is an element of N, where V satisfies: (i) V is real analytic on R\{0}; (ii) lim(|x|->infinity)(V(x)/ln(x(2) + 1)) = +infinity; and (iii) lim(|x|-> 0)(V(x)/ln(x(-2) + 1)) = +infinity. Orthogonalisation of the (ordered) base {1, z(-1), z, z(-2), z(2), . . . , z(,)(-k) z(k), . . .} with respect to <center dot , center dot > L yields the even degree and odd degree orthonormal Laurent polynomials {phi(m)(z)}(infinity) (m= 0) : phi 2n (z) = xi((2n))(-n) Z(-n) + . . .+ xi((2n))(n) Z(n) ,xi(n) ((2n)) > 0, and phi 2n+ 1(z) = xi((2n+ 1))(-n-1) Z(n-1) + . . . + xi((2n+1))(n) Z(n,) xi((2n-1))(-n) > 0 . Define the even degree and odd degree monic orthogonal Laurent polynomials: pi(2n)(z) := (xi((2n)-1)(n)phi 2n(Z) and pi 2n+1(Z) := (xi((2n+1)(-n-1))(-1) phi 2n+1(Z). Asymptotics in the double- scaling limit N, n ->infinity such that N/ n = 1 + o(1) of pi(2n+1)(Z) (in the entire complex plane),xi((2n+))(-n-1,) and xi(2n+1) (Z) ( in the entire complex plane) are obtained by formulating the odd degree monic orthogonal Laurent polynomial problem as a matrix Riemann - Hilbert problem on R, and then extracting the large-n behaviour by applying the non- linear steepest- descent method introduced in [ 1] and further developed in [2],[3].
引用
收藏
页码:149 / 202
页数:54
相关论文
共 71 条
[1]  
ABRAMOWITZ M., 1972, National Bureau of Standards Applied Mathematics Series, V55
[2]   Scalar and matrix Riemann-Hilbert approach to the strong asymptotics of Pade approximants and complex orthogonal polynomials with varying weight [J].
Aptekarev, AI ;
Van Assche, W .
JOURNAL OF APPROXIMATION THEORY, 2004, 129 (02) :129-166
[3]  
BAIK J, IN PRESS UNIFORM ASY
[4]   Orthogonal rational functions and tridiagonal matrices [J].
Bultheel, A ;
González-Vera, P ;
Hendriksen, E ;
Njåstad, O .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) :89-97
[5]   Quadrature and orthogonal rational functions [J].
Bultheel, A ;
González-Vera, P ;
Hendriksen, E ;
Njåstad, O .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) :67-91
[6]  
BULTHEEL A, 1999, MONOGRAPHS APPL COMP, V5
[7]   Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle [J].
Cantero, MJ ;
Moral, L ;
Velázquez, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 :29-56
[8]  
CLAEYS T, IN PRESS MULTI CRITI
[9]  
COCHRAN L, 1994, LECT NOTES PURE APPL, V154, P47
[10]   A continuum limit of the relativistic Toda lattice: asymptotic theory of discrete Laurent orthogonal polynomials with varying recurrence coefficients [J].
Coussement, J ;
Van Assche, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (15) :3337-3366