Parametric free-form shape design with PDE models and reduced basis method

被引:83
|
作者
Lassila, Toni [1 ,2 ]
Rozza, Gianluigi [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Anal & Sci Comp, Stn 8, CH-1015 Lausanne, Switzerland
[2] Aalto Univ, Inst Math, FI-02015 Helsinki, Finland
关键词
Reduced basis methods; Free-form deformations; Empirical interpolation; Engineering design; Shape optimization; NAVIER-STOKES EQUATIONS; POSTERIORI ERROR ESTIMATION; REAL-TIME SOLUTION; INTERPOLATION METHOD; BASIS APPROXIMATION; OPTIMIZATION; STABILITY; NONAFFINE; BOUNDS;
D O I
10.1016/j.cma.2010.01.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a coupling of the reduced basis methods and free-form deformations for shape optimization and design of systems modelled by elliptic PDEs. The free-form deformations give a parameterization of the shape that is independent of the mesh, the initial geometry, and the underlying PDE model. The resulting parametric PDEs are solved by reduced basis methods. An important role in our implementation is played by the recently proposed empirical interpolation method, which allows approximating the non-affinely parameterized deformations with affinely parameterized ones. These ingredients together give rise to an efficient online computational procedure for a repeated evaluation design environment like the one for shape optimization. The proposed approach is demonstrated on an airfoil inverse design problem. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1583 / 1592
页数:10
相关论文
共 50 条
  • [1] Shape optimization for viscous flows by reduced basis methods and free-form deformation
    Manzoni, Andrea
    Quarteroni, Alfio
    Rozza, Gianluigi
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 70 (05) : 646 - 670
  • [2] Free-form optimization method for shape design of framed structure
    Shimoda, Masatoshi
    Hayashi, Fuminori
    Umeda, Naoki
    Liu, Yang
    Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2013, 79 (804): : 2884 - 2898
  • [3] Application of free-form deformation method in the shape optimization design of hydrofoil
    Li J.
    Wang P.
    Niu H.
    Zhang N.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2020, 41 (09): : 1249 - 1254
  • [4] Classification of a Free-Form Surface by Parametric Design and Machine Learning
    Lee, Chankyu
    Shin, Sangyun
    Issa, Raja R. A.
    CONSTRUCTION RESEARCH CONGRESS 2020: PROJECT MANAGEMENT AND CONTROLS, MATERIALS, AND CONTRACTS, 2020, : 777 - 783
  • [5] NON-PARAMETRIC SHAPE DESIGN OF FREE-FORM SHELLS USING FAIRNESS MEASURES AND DISCRETE DIFFERENTIAL GEOMETRY
    Ohsaki, Makoto
    Hayakawa, Kentaro
    JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES, 2021, 62 (02): : 93 - 101
  • [6] Non-parametric free-form optimization method for frame structures
    Shimoda, Masatoshi
    Liu, Yang
    Morimoto, Takashi
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 50 (01) : 129 - 146
  • [7] A non-parametric free-form optimization method for shell structures
    Masatoshi Shimoda
    Yang Liu
    Structural and Multidisciplinary Optimization, 2014, 50 : 409 - 423
  • [8] Non-parametric free-form optimization method for frame structures
    Masatoshi Shimoda
    Yang Liu
    Takashi Morimoto
    Structural and Multidisciplinary Optimization, 2014, 50 : 129 - 146
  • [9] A non-parametric free-form optimization method for shell structures
    Shimoda, Masatoshi
    Liu, Yang
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 50 (03) : 409 - 423
  • [10] A hybrid shape representation for free-form modeling
    Allègre, R
    Barbier, A
    Galin, E
    Akkouche, S
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, 2004, : 7 - +