Approximate Query Processing for Big Data in Heterogeneous Databases

被引:6
作者
Muniswamaiah, Manoj [1 ]
Agerwala, Tilak [1 ]
Tappert, Charles C. [1 ]
机构
[1] Pace Univ, Seidenberg Sch CSIS, New York, NY 10038 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2020年
关键词
Big Data; approximate query processing (AQP); database; query optimizer;
D O I
10.1109/BigData50022.2020.9378310
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Big Data analytics is used in decision making. It involves heavy computation to obtain exact answers. To alleviate this problem, approximate query processing (AQP) was adopted, which provides approximate results with error bounds. The AQP models which have been proposed are supported only by a single database. In an organization, big data is stored in multiple databases that have different data models. This research aims to provide AQP as a middleware solution using query optimization for heterogeneous databases.
引用
收藏
页码:5765 / 5767
页数:3
相关论文
共 50 条
[41]   The opportunities and shortcomings of using big data and national databases for sarcoma research [J].
Lyu, Heather G. ;
Haider, Adil H. ;
Landman, Adam B. ;
Raut, Chandrajit P. .
CANCER, 2019, 125 (17) :2926-2934
[42]   Data protection in heterogeneous big data systems [J].
M. A. Poltavtseva ;
E. B. Aleksandrova ;
V. S. Shmatov ;
P. D. Zegzhda .
Journal of Computer Virology and Hacking Techniques, 2023, 19 :451-458
[43]   Efficient monochromatic and bichromatic probabilistic reverse top-k query processing for uncertain big data [J].
Xiao, Guoqing ;
Li, Kenli ;
Zhou, Xu ;
Li, Keqin .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 89 :92-113
[44]   Data protection in heterogeneous big data systems [J].
Poltavtseva, M. A. ;
Aleksandrova, E. B. ;
Shmatov, V. S. ;
Zegzhda, P. D. .
JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2023, 19 (03) :451-458
[45]   Query Rewriting and Semantic Annotation in Semantic-Based Image Retrieval under Heterogeneous Ontologies of Big Data [J].
Jia, Baoxian ;
Meng, Bin ;
Zhang, Wunong ;
Liu, Jia .
TRAITEMENT DU SIGNAL, 2020, 37 (01) :101-105
[46]   Scalable Query Processing and Query Engines over Cloud Databases: Models, Paradigms, Techniques, Future Challenges [J].
Cuzzocrea, Alfredo .
33RD INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2021), 2020, :272-275
[47]   BIG DATA PROCESSING: BIG CHALLENGES AND OPPORTUNITIES [J].
Ji, Changqing ;
Li, Yu ;
Qiu, Wenming ;
Jin, Yingwei ;
Xu, Yujie ;
Awada, Uchechukwu ;
Li, Keqiu ;
Qu, Wenyu .
JOURNAL OF INTERCONNECTION NETWORKS, 2012, 13 (3-4)
[48]   Banking Comprehensive Risk Management System based on Big Data Architecture of Hybrid Processing Engines and Databases [J].
Ma, Shenglan ;
Wang, Hao ;
Xu, Botong ;
Xiao, Hong ;
Xie, Fangkai ;
Dai, Hong-Ning ;
Tao, Ran ;
Yi, Ruihua ;
Wang, Tongsen .
2018 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2018, :1844-1851
[49]   Approximate Incremental Big-Data Harmonization [J].
Agarwal, Puneet ;
Shroff, Gautam ;
Malhotra, Pankaj .
2013 IEEE INTERNATIONAL CONGRESS ON BIG DATA, 2013, :118-125
[50]   DBEst: Revisiting Approximate Query Processing Engines with Machine Learning Models [J].
Ma, Qingzhi ;
Triantafillou, Peter .
SIGMOD '19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2019, :1553-1570