Approximate Query Processing for Big Data in Heterogeneous Databases

被引:5
作者
Muniswamaiah, Manoj [1 ]
Agerwala, Tilak [1 ]
Tappert, Charles C. [1 ]
机构
[1] Pace Univ, Seidenberg Sch CSIS, New York, NY 10038 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2020年
关键词
Big Data; approximate query processing (AQP); database; query optimizer;
D O I
10.1109/BigData50022.2020.9378310
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Big Data analytics is used in decision making. It involves heavy computation to obtain exact answers. To alleviate this problem, approximate query processing (AQP) was adopted, which provides approximate results with error bounds. The AQP models which have been proposed are supported only by a single database. In an organization, big data is stored in multiple databases that have different data models. This research aims to provide AQP as a middleware solution using query optimization for heterogeneous databases.
引用
收藏
页码:5765 / 5767
页数:3
相关论文
共 50 条
  • [21] Data source selection for approximate query
    Hongjie Guo
    Jianzhong Li
    Hong Gao
    Journal of Combinatorial Optimization, 2022, 44 : 2443 - 2459
  • [22] Performance Comparison of Big Data Processing Utilizing SciDB and Apache Accumulo Databases
    Abu Mhana, Mohammad
    Khalifeh, Ala'
    Alouneh, Sahel
    2022 SEVENTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING, FMEC, 2022, : 17 - 21
  • [23] SQL QUERY OPTIMIZATION FOR HIGHLY NORMALIZED BIG DATA
    Golov, Nikolay I.
    Ronnback, Lars
    BIZNES INFORMATIKA-BUSINESS INFORMATICS, 2015, 33 (03): : 7 - 14
  • [24] Parallel Processing of Big Heterogeneous Data for Security Monitoring of IoT Networks
    Saenko, Igor
    Kotenko, Igor
    Kushnerevich, Alexey
    2017 25TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING (PDP 2017), 2017, : 329 - 336
  • [25] Big Data and Query Optimization Techniques
    Chugh, Aarti
    Sharma, Vivek Kumar
    Jain, Charu
    ADVANCES IN COMPUTING AND INTELLIGENT SYSTEMS, ICACM 2019, 2020, : 337 - 345
  • [26] Efficient Spark-Based Framework for Big Geospatial Data Query Processing and Analysis
    Aljawarneh, Isam Mashhour
    Bellavista, Paolo
    Corradi, Antonio
    Montanari, Rebecca
    Foschini, Luca
    Zanotti, Andrea
    2017 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2017, : 851 - 856
  • [27] Data Modeling in Big Data Systems Including Polystore and Heterogeneous Information Processing Components
    M. A. Poltavtseva
    Automatic Control and Computer Sciences, 2023, 57 : 1096 - 1102
  • [28] Data Modeling in Big Data Systems Including Polystore and Heterogeneous Information Processing Components
    Poltavtseva, M. A.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2023, 57 (08) : 1096 - 1102
  • [29] SUM-optimal histograms for approximate query processing
    Meifan Zhang
    Hongzhi Wang
    Jianzhong Li
    Hong Gao
    Knowledge and Information Systems, 2020, 62 : 3155 - 3180
  • [30] SUM-optimal histograms for approximate query processing
    Zhang, Meifan
    Wang, Hongzhi
    Li, Jianzhong
    Gao, Hong
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (08) : 3155 - 3180